2.在三棱錐A-BCD中,點(diǎn)A在BD上的射影為O,∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2$\sqrt{3}$,AC=$\sqrt{6}$.
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)若E是AC的中點(diǎn),求直線BE和平面BCD所成角的正切值.

分析 (Ⅰ)連接OC,由題意可得AO⊥BD,由勾股定理的逆定理可得AO⊥CO,運(yùn)用線面垂直的判定定理,即可得證;
(Ⅱ)取CO的中點(diǎn)H,連接EH,運(yùn)用中位線定理和線面垂直的性質(zhì)定理,可得EH⊥平面BCD,即有∠EBH為直線BE和平面BCD所成角.運(yùn)用正切函數(shù)的定義,計(jì)算即可得到所求值.

解答 解:(Ⅰ)證明:連接OC,由點(diǎn)A在BD上的射影為O,可得
AO⊥BD,
由∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2$\sqrt{3}$,可得
BD=$\sqrt{4+12}$=4,AO=$\frac{AB•AD}{BD}$=$\frac{2×2\sqrt{3}}{4}$=$\sqrt{3}$,
同理可得CO=$\sqrt{3}$,由AO2+CO2=AC2,可得AO⊥CO,
又BD,CO?平面BCD,且BD,CO為相交二直線,
可得AO⊥平面BCD;
(Ⅱ)取CO的中點(diǎn)H,連接EH,
由中位線定理可得EH∥AO,EH=$\frac{1}{2}$AO,
由AO⊥平面BCD,可得EH⊥平面BCD,
即有∠EBH為直線BE和平面BCD所成角.
又EH=$\frac{\sqrt{3}}{2}$,BE=$\sqrt{A{B}^{2}-\frac{A{C}^{2}}{4}}$=$\sqrt{4-(\frac{\sqrt{6}}{2})^{2}}$=$\frac{\sqrt{10}}{2}$,
BH=$\sqrt{B{E}^{2}-E{H}^{2}}$=$\sqrt{\frac{10}{4}-\frac{3}{4}}$=$\frac{\sqrt{7}}{2}$,
可得tan∠EBH=$\frac{EH}{BH}$=$\frac{\sqrt{21}}{7}$.
即有直線BE和平面BCD所成角的正切值為$\frac{\sqrt{21}}{7}$.

點(diǎn)評(píng) 本題考查線面垂直的證明,注意運(yùn)用線面垂直的判定定理,考查線面所成角的正切值,注意運(yùn)用中位線定理和線面所成角的定義,考查運(yùn)算能力和邏輯推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(α)=$\frac{tan(π-α)sin(-2π-α)cos(6π-α)}{sin(α+\frac{3}{2}π)cos(α-\frac{1}{2}π)}$
(1)化簡(jiǎn)f(α);
(2)若sinα=-$\frac{2}{3}$,α∈[一π,-$\frac{π}{2}$],求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=$\sqrt{(a+2){x}^{2}+bx+a+2}$(a,b∈R)定義域?yàn)镽,則3a+b的取值范圍為[-6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線l過拋物線x2=2py(p>0)的焦點(diǎn),且與拋物線交于A、B兩點(diǎn),若線段AB的長(zhǎng)是6,AB的中點(diǎn)到x軸的距離是1,則此拋物線方程是( 。
A.x2=12yB.x2=8yC.x2=6yD.x2=4y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的左焦點(diǎn)到右頂點(diǎn)的距離為( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{bx}{a{x}^{2}+1}$(b≠0,a>0).
(1)判斷f(x)的奇偶性;
(2)若f(1)=$\frac{1}{2}$,log3(4a-b)=$\frac{1}{2}$log24.
①求a,b的值.
②已知A,B是銳角三角形ABC的內(nèi)角,試判斷f(sinA)與f(cosB)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)).在極坐標(biāo)系 (與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(2,1),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a.b>0)的右焦點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)F重合,兩條曲線在第一象限的交點(diǎn)為M,若MF⊥x軸,則該雙曲線的離心率e=(  )
A.$\sqrt{2}$B.$\sqrt{2}$+1C.$\sqrt{5}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=alnx-x+1,g(x)=-x2+(a+1)x+1,若對(duì)任意的x∈[1,e],不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案