【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 交于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點(diǎn)是線(xiàn)段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)在什么位置時(shí),二面角的余弦值為.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ).
【解析】試題分析:(1)先證明 ,再證明,證明平面,從而可得 ;
(2)建立直角坐標(biāo)系,設(shè),求出平面、平面的一個(gè)法向量,利用向量的夾角公式,結(jié)合二面角的余弦值為,即可得出結(jié)論.
試題解析:(Ⅰ)∵在矩形中, , ,
∴, ∴即.
∴在圖2中, , .
又∵平面平面,平面平面,
∴平面, ∴,
依題意, ∥且,∴四邊形為平行四邊形.
∴∥, ∴, 又∵,
∴平面, 又∵平面, ∴.
(Ⅱ)如圖1,在中, , ,
∵∥, ,∴.
如圖,以點(diǎn)為原點(diǎn)建立平面直角坐標(biāo)系,則
, , , ,
∴, , ,
∵,∴平面,
∴為平面的法向量.
設(shè),則,
設(shè)為平面的法向量,則
即,可取,
依題意,有,
整理得,即,∴,
∴當(dāng)點(diǎn)在線(xiàn)段的四等分點(diǎn)且時(shí),滿(mǎn)足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】個(gè)人排成一排,在下列情況下,各有多少種不同排法?
(1)甲不排頭,也不排尾,
(2)甲、乙、丙三人必須在一起
(3)甲、乙之間有且只有兩人,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn):,過(guò)焦點(diǎn)斜率大于零的直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),且與其準(zhǔn)線(xiàn)交于點(diǎn).
(Ⅰ)若線(xiàn)段的長(zhǎng)為,求直線(xiàn)的方程;
(Ⅱ)在上是否存在點(diǎn),使得對(duì)任意直線(xiàn),直線(xiàn),,的斜率始終成等差數(shù)列,若存在求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線(xiàn).
(Ⅰ)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程.
(Ⅱ)求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一臺(tái)機(jī)器使用時(shí)間較長(zhǎng),但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,如表為抽樣試驗(yàn)結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時(shí)生產(chǎn)有 缺點(diǎn)的零件數(shù)y(件) | 11 | 9 | 8 | 5 |
(1)用相關(guān)系數(shù)r對(duì)變量y與x進(jìn)行相關(guān)性檢驗(yàn);
(2)如果y與x有線(xiàn)性相關(guān)關(guān)系,求線(xiàn)性回歸方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?(結(jié)果保留整數(shù))
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù)計(jì)算公式:,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,圓與軸負(fù)半軸交于點(diǎn),過(guò)點(diǎn)的直線(xiàn),分別與圓交于,兩點(diǎn).
(Ⅰ)若,,求的面積;
(Ⅱ)若直線(xiàn)過(guò)點(diǎn),證明:為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門(mén)的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過(guò)5000步的概率;
(2)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類(lèi)型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com