16.已知集合A={x|x2-3x-4>0},B={x||x|≤3},則A∩B=( 。
A.[3,4)B.(-4,-3]C.(1,3]D.[-3,-1)

分析 解不等式得集合A、B,根據(jù)交集的定義寫出A∩B.

解答 解:集合A={x|x2-3x-4>0}={x|x<-1或x>4},
B={x||x|≤3}={x|-3≤x≤3},
則A∩B={x|-3<x<-1}=[-3,-1).
故選:D.

點(diǎn)評(píng) 本題考查了解不等式與集合的基本運(yùn)算,是簡單題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=lnx-{x^2}+f'(\frac{1}{2})•\frac{x+2}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:$(\frac{1}{2}{x^2}+x+1)f(x)<2{e^x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,離心率e=$\frac{\sqrt{2}}{2}$,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)A為橢圓上的一動(dòng)點(diǎn)(非長軸端點(diǎn)),AF1的延長線與橢圓交于B點(diǎn),AO的延長線與橢圓交于C點(diǎn),若△ABC面積為$\frac{\sqrt{6}}{2}$,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=2cos2x-sin2x的最小值是(  )
A.-2B.$1-\sqrt{2}$C.$1+\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),當(dāng)x=1時(shí)f(x)取得極值-2
(I)求函數(shù)f(x)的解析式并討論單調(diào)性
(II)證明對(duì)任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的積,形成新的數(shù)列,這樣的操作叫做該數(shù)列的一次“擴(kuò)展”.將數(shù)列1,2進(jìn)行“擴(kuò)展”,第一次得到數(shù)列1,2,2;第二次得到數(shù)列1,2,2,4,2;….設(shè)第n次“擴(kuò)展”后所得數(shù)列為1,x1,x2,…,xm,2,并記an=log2(1•x1•x2•…•xm•2),則數(shù)列{an}的通項(xiàng)公式為${a_n}=\frac{{{3^n}+1}}{2}$,n∈N*.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.邊長為4的正三角形ABC中,點(diǎn)D在邊AB上,$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{DB}$,M是BC的中點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{CD}$=( 。
A.16B.$12\sqrt{3}$C.$-8\sqrt{3}$D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓E的焦點(diǎn)在x軸上,長軸長為2$\sqrt{5}$,離心率為$\frac{2\sqrt{5}}{5}$;拋物線G:y2=2px(p>0)的焦點(diǎn)F與橢圓E的右焦點(diǎn)重合,若斜率為k的直線l過拋物線G的焦點(diǎn)F與橢圓E交于A,B兩點(diǎn),與拋物線G相交于C,D兩點(diǎn).
(1)求橢圓E及拋物線G的方程;
(2)證明:存在實(shí)數(shù)λ,使得$\frac{2}{|AB|}$+$\frac{λ}{CD}$為常數(shù),并求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若x,y滿足$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$,當(dāng)n=x+2y取最大值時(shí),${({x-\frac{2}{{\sqrt{x}}}})^n}$的常數(shù)項(xiàng)為( 。
A.240B.-240C.60D.16

查看答案和解析>>

同步練習(xí)冊答案