【題目】已知是定義在
上的函數(shù),且對任意
都有
,且滿足
,
,則
=
A. B.
C.
D.
【答案】D
【解析】
函數(shù)y=f(x)的圖象關(guān)于原點對稱即函數(shù)y=f(x)為奇函數(shù),求出f(2)的值,結(jié)合函數(shù)的周期,利用所求周期即可求解.
∵,
∴函數(shù)y=f(x)的圖象關(guān)于(0,0)對稱,即函數(shù)y=f(x)為奇函數(shù),
∴f(0)=0,f(1)=3,
∵f(x+2)=f(2﹣x)+4f(2)=﹣f(x﹣2)+4f(2),
∴f(x+4)=﹣f(x)+4f(2),
f(x+8)=﹣f(x+4)+4f(2)=f(x),
∴函數(shù)的周期為8,
∴f(2019)=f(252×8+3)=f(3),
而f(2)=f(2)+4f(2),故f(2)=0,
故f(3)=f(1)+4f(2)=f(1)=3,
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
①y=πx是指數(shù)函數(shù)
②函數(shù)既是偶函數(shù)又是奇函數(shù)
③函數(shù)的單調(diào)遞減區(qū)間是
④在增函數(shù)與減函數(shù)的定義中,可以把任意兩個自變量”改為“存在兩個自變量
⑤與
表示同一個集合
⑥所有的單調(diào)函數(shù)都有最值
其中正確命題的序號是_______________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)是
上的減函數(shù),
,且 f [ f(x)]=16x-3.
(1)求;
(2)若在(-2,3)單調(diào)遞增,求實數(shù)
的取值范圍;
(3)當(dāng)時,
有最大值1,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 ,點P在圓外,過點P作圓C的兩條切線,切點分別為T1 , T2 .
(1)若 ,求點P的軌跡方程;
(2)設(shè) ,點P在平面上構(gòu)成的圖形為M,求M的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:若關(guān)于
的方程
無實數(shù)根,則
;命題
:若關(guān)于
的方程
有兩個不相等的正實數(shù)根,則
.
(1)寫出命題的否命題,并判斷命題
的真假;
(2)判斷命題“且
”的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比,投資
類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時
兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖所示的程序框圖,解答下列問題:
(1)求輸入的的值分別為
時,輸出的
的值;
(2)根據(jù)程序框圖,寫出函數(shù)(
)的解析式;并求當(dāng)關(guān)于
的方程
有三個互不相等的實數(shù)解時,實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com