【題目】已知函數(shù).

1)當(dāng)時(shí),求的圖象在處的切線方程;

2)若函數(shù)上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;

3)若對(duì)區(qū)間內(nèi)任意兩個(gè)不等的實(shí)數(shù),,不等式恒成立,求實(shí)數(shù)a的取值范圍.

【答案】1;(2;(3

【解析】

1)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出函數(shù)處的切線方程

2)先通過(guò)求導(dǎo),研究函數(shù)的單調(diào)性,然后利用函數(shù)上有兩個(gè)零點(diǎn)可得直線的圖像有兩個(gè)交點(diǎn),從而得到,求解即可

3)不妨設(shè),恒成立等價(jià)于,化簡(jiǎn)為,然后,令,然后判斷的單調(diào)性即可求解

1)當(dāng)時(shí),,,切點(diǎn)坐標(biāo)為,

切線的斜率,則切線方程為,即.

2,則,

,故時(shí),.

當(dāng)時(shí),

當(dāng)時(shí),.

處取得極大值.

,,,則,

上的最小值是.

上有兩個(gè)零點(diǎn)的條件是

解得

實(shí)數(shù)m的取值范圍是

3)不妨設(shè),恒成立等價(jià)于,即.

,由,具有任意性知,在區(qū)間內(nèi)單調(diào)遞減,

恒成立,即恒成立,

,上恒成立.

,則

上單調(diào)遞增,則,

實(shí)數(shù)a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若,求處的切線與兩坐標(biāo)軸圍成的三角形的面積;

2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程;

2)過(guò)曲線上一點(diǎn)作直線與曲線交于兩點(diǎn),中點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+4[sin(θ+)]x2,θ∈[0,2π].

)若函數(shù)f(x)為偶函數(shù),求tanθ的值;

)若f(x)在[,1]上是單調(diào)函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,且的中點(diǎn).

)求證:平面

)求二面角的大。

)在線段上是否存在一點(diǎn),使得所成的角為? 若存在,求出的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線過(guò)點(diǎn),拋物線處的切線交軸于點(diǎn),過(guò)點(diǎn)作直線與拋物線交于不同的兩點(diǎn),直線、分別與拋物線的準(zhǔn)線交于點(diǎn)、,其中為坐標(biāo)原點(diǎn).

)求拋物線的方程及其準(zhǔn)線方程,并求出點(diǎn)的坐標(biāo);

)求證:為線段的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與過(guò)其右焦點(diǎn)F1,0)的直線交于不同的兩點(diǎn)AB,線段AB的中點(diǎn)為D,且直線l與直線OD的斜率之積為.

1)求C的方程;

2)設(shè)橢圓的左頂點(diǎn)為MkMA,kMB分別表示直線MAMB的斜率,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019925.阿里巴巴在杭州云棲大會(huì)上正式對(duì)外發(fā)布了含光800AI芯片,在業(yè)界標(biāo)準(zhǔn)的ResNet -50測(cè)試中,含光800推理性能達(dá)到78563lPS,比目前業(yè)界最好的AI芯片性能高4;能效比500 IPS/W,是第二名的3.3.在國(guó)內(nèi)集成電路產(chǎn)業(yè)發(fā)展中,集成電路設(shè)計(jì)產(chǎn)業(yè)始終是國(guó)內(nèi)集成電路產(chǎn)業(yè)中最具發(fā)展活力的領(lǐng)域,增長(zhǎng)也最為迅速.如圖是2014-2018年中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額(億元)及其增速(%)的統(tǒng)計(jì)圖,則下面結(jié)論中正確的是( )

A.2014-2018,中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額逐年增加

B.2014-2017,中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額增速逐年下降

C.2018年中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額的增長(zhǎng)率比2015年的高

D.2018年與2014年相比,中國(guó)集成電路設(shè)計(jì)產(chǎn)業(yè)銷售額的增長(zhǎng)率約為110%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將曲線方程,先向左平移2個(gè)單位,再向上平移2個(gè)單位,得到曲線C.

1)點(diǎn)Mx,y)為曲線C上任意一點(diǎn),寫出曲線C的參數(shù)方程,并求出的最大值;

2)設(shè)直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點(diǎn)為E,F,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段EF的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案