【題目】已知數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,則 (a5+a7+a9)的值是( )
A.﹣5
B.-
C.5
D.

【答案】A
【解析】解:∵log3an+1=log3an+1
∴an+1=3an
∴數(shù)列{an}是以3為公比的等比數(shù)列,
∴a2+a4+a6=a2(1+q2+q4)=9
∴a5+a7+a9=a5(1+q2+q4)=a2q3(1+q2+q4)=9×33=35

故選A
【考點精析】本題主要考查了等比數(shù)列的基本性質(zhì)的相關知識點,需要掌握{(diào)an}為等比數(shù)列,則下標成等差數(shù)列的對應項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知n次多項式 ,在求fn(x0)值的時候,不同的算法需要進行的運算次數(shù)是不同的.例如計算 (k=2,3,4,…,n)的值需要k﹣1次乘法運算,按這種算法進行計算f3(x0)的值共需要9次運算(6次乘法運算,3次加法運算).現(xiàn)按如圖所示的框圖進行運算,計算fn(x0)的值共需要次運算.(
A.2n
B.2n
C.
D.n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若f(x)是定義在R上的偶函數(shù),求實數(shù)a的值;
(2)在(1)的條件下,若g(x)=f(x)﹣2,求函數(shù)g(x)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取50個作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為[5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖(如圖),

(1)求a的值,并根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的眾數(shù)與平均值;
(2)從盒子中隨機抽取3個小球,其中重量在[5,15]內(nèi)的小球個數(shù)為X,求X的分布列和數(shù)學期望.(以直方圖中的頻率作為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結論;
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大。
(2)若b= a,△ABC的面積為 sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦距為2,且過點P(1,
(1)橢圓C的方程;
(2)設橢圓C的左右焦點分別為F1 , F2 , 過點F2的直線l與橢圓C交于M,N兩點.
①當直線l的傾斜角為45°時,求|MN|的長;
②求△MF1N的內(nèi)切圓的面積的最大值,并求出當△MF1N的內(nèi)切圓的面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)g(x)= 的定義域是( )
A.[0,1]
B.[0,1)
C.[0,1)∪(1,4]
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要在如圖所示的花圃中的5個區(qū)域中種入4種顏色不同的花,要求相鄰區(qū)域不同色,有種不同的種法(用數(shù)字作答).

查看答案和解析>>

同步練習冊答案