6.化簡(jiǎn):sin2α•sin2β+cos2α•cos2β-$\frac{1}{2}$cos2α•cos2β.

分析 利用二倍角公式把$\frac{1}{2}cos2αcos2β$升冪,然后利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求值.

解答 解:∵cos2αcos2β=(cos2α-sin2α)(cos2β-sin2β)
=cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β,
∴sin2α•sin2β+cos2α•cos2β-$\frac{1}{2}$cos2α•cos2β
=sin2α•sin2β+cos2α•cos2β-$\frac{1}{2}$(cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β)
=$\frac{1}{2}$cos2α•cos2β+$\frac{1}{2}$sin2α•sin2β+$\frac{1}{2}$cos2αsin2β+$\frac{1}{2}$sin2αcos2β
=$\frac{1}{2}$(cos2α•cos2β+cos2αsin2β)+$\frac{1}{2}$(sin2α•sin2β+sin2αcos2β)
=$\frac{1}{2}$cos2α+$\frac{1}{2}$sin2α=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查同角三角函數(shù)的基本關(guān)系、二倍角公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.有一個(gè)不透明的袋子,裝有三個(gè)形狀完全相同的小球,球上分別編有數(shù)字1,2,3.
(Ⅰ)若逐個(gè)不放回的取兩次,求第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3 整除的概率;
(Ⅱ)若有放回的取兩次,編號(hào)依次為a,b,求直線ax+by+1=0與圓x2+y2=$\frac{1}{9}$有公共點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,設(shè)D=BC邊的中點(diǎn),則向量$\overrightarrow{AD}$等于( 。
A.$\overrightarrow{AB}$+$\overrightarrow{AC}$B.$\overrightarrow{AB}$-$\overrightarrow{AC}$C.$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)D.$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求異面直線FC與DE所成角的余弦值;
(2)求證:平面BDEF⊥平面ABCD;
(3)直線AF與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx(ω>0),f($\frac{π}{6}$)+f($\frac{π}{2}$)=0,且f(x)在區(qū)間($\frac{π}{6}$,$\frac{π}{2}$)上遞減,則ω=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.己知雙曲線C的兩個(gè)焦點(diǎn)分別為F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0),漸近線方程為y=±$\sqrt{2}$x.
(1)求雙曲線C的方程;
(2)若過點(diǎn)F1(-$\sqrt{3}$,0)的直線l與雙曲線C的左支有兩個(gè)交點(diǎn),且點(diǎn)M(0,1)到l的距離小于1,求直線l的傾斜角的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.判斷下列對(duì)應(yīng)關(guān)系是否為函數(shù).
(1)A=R,B=R,對(duì)任意的x∈A,x→$\sqrt{x}$;
(2)A=R,B={0,1},對(duì)應(yīng)關(guān)系f:當(dāng)x為有理數(shù)時(shí),f(x)=1;當(dāng)x為無(wú)理數(shù)時(shí),f(x)=0;
(3)A=B=N*,對(duì)任意的x∈A,x→|x-5|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,已知A=120°,b=3,c=5,則sinB+sinC=$\frac{4\sqrt{3}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在數(shù)列{an}中,已知an+1an=2an-an+1,且a1=2(n∈N+),設(shè)bn=an2-an,且Sn為{bn}的前n項(xiàng)和,試證:2≤Sn<3.

查看答案和解析>>

同步練習(xí)冊(cè)答案