分析 通過Sn=n(2n-1)an與Sn+1=(n+1)(2n+1)an+1作差、整理可知$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2n-1}{2n+3}$,從而$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{2n-3}{2n+1}$、$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{2n-5}{2n-1}$、…、$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{4}$,累乘計(jì)算即得結(jié)論.
解答 解:∵Sn=n(2n-1)an,
∴Sn+1=(n+1)(2n+1)an+1,
兩式相減得:an+1=(n+1)(2n+1)an+1-n(2n-1)an,
整理得:(2n+3)an+1=(2n-1)an,
整理得:$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2n-1}{2n+3}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{2n-3}{2n+1}$,$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{2n-5}{2n-1}$,…,$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{4}$,
累乘得:$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{2n-3}{2n+1}$•$\frac{2n-5}{2n-1}$•…•$\frac{1}{4}$,
∴$\frac{{a}_{n}}{{a}_{1}}$=$\frac{3}{(2n+1)(2n-1)}$,
又∵a1=$\frac{1}{3}$,
∴an=$\frac{1}{3}$•$\frac{3}{(2n+1)(2n-1)}$=$\frac{1}{(2n+1)(2n-1)}$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng),考查運(yùn)算求解能力,對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com