18.已知平面直角坐標系xOy中,過點P(-1,-2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ•sinθ•tanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.

分析 (1)利用同角的平方關(guān)系以及極坐標方程和直角坐標的互化公式求解;
(2)結(jié)合直線的參數(shù)方程中參數(shù)的幾何意義和二次方程的韋達定理,求解即可.

解答 解:(1)∵直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t為參數(shù)),
∴直線l的普通方程:x-y-1=0,
∵曲線C的極坐標方程為 ρsinθtanθ=2a(a>0),
∴ρ2sin2θ=2aρcosθ(a>0),
∴曲線C的普通方程:y2=2ax;
(2)∵y2=2ax;
∴x≥0,
設(shè)直線l上點M、N對應(yīng)的參數(shù)分別為t1,t2,(t1>0,t2>0),
則|PM|=t1,|PN|=t2,
∵|PM|=|MN|,
∴|PM|=$\frac{1}{2}$|PN|,
∴t2=2t1,
將$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t為參數(shù)),代入y2=2ax得
t2-2$\sqrt{2}$(a+2)t+4(a+2)=0,
∴t1+t2=2$\sqrt{2}$(a+2),
t1t2=4(a+2),
∵t2=2t1,
∴a=$\frac{1}{4}$.

點評 本題重點考查了曲線的參數(shù)方程和普通方程的互化、極坐標方程和直角坐標方程的互化等知識.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,直角△ABC中,∠ACB=90°,BC=2AC=4,D、E分別是AB、BC邊的中點,沿DE將△BDE折起至△FDE,且∠CEF=60°.
(Ⅰ)求四棱錐F-ADEC的體積;
(Ⅱ)求證:平面ADF⊥平面ACF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線y=mx與x2+y2-4x+2=0相切,則m值為( 。
A.±$\sqrt{3}$B.±$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{2}$D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=x2-sin|x|在[-2,2]上的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標系xOy中,曲線C1:$\left\{\begin{array}{l}{x=3-t}\\{y=3+t}\end{array}\right.(t為參數(shù))$,曲線C2:x2+(y-1)2=1,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C1,C2的極坐標方程;
(Ⅱ)若射線l:θ=α(ρ>0)分別交C1,C2于A,B兩點,求$\frac{|OB|}{|OA|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若點P是△ABC的外心,且$\overrightarrow{PA}$+$\overrightarrow{PB}$+λ$\overrightarrow{PC}$=$\overrightarrow{0}$,∠C=120°,則實數(shù)λ的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.方程$\frac{x^2}{3-k}+\frac{y^2}{k+3}=1$表示橢圓,則k的取值范圍是{k|-3<k<3且k≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.$(t為參數(shù),0≤θ<π),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=-4cosα,圓C的圓心到直線l的距離為$\frac{3}{2}$
(1)求θ的值;
(2)已知P(1,0),若直線l與圓C交于A,B兩點,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

設(shè)函數(shù),則當時,的導(dǎo)函數(shù)的極小值為

查看答案和解析>>

同步練習(xí)冊答案