如圖1,⊙O的直徑AB=4,點(diǎn)C、D為⊙O上兩點(diǎn),且∠CAB=45o,F(xiàn)為的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直(如圖2).

(Ⅰ)求證:OF//平面ACD;
(Ⅱ)在上是否存在點(diǎn),使得平面平面ACD?若存在,試指出點(diǎn)的位置;若不存在,請說明理由.

(1)根據(jù)線面平行的判定定理來得到證明,關(guān)鍵是對于的證明。
(2)根據(jù)題意,可以猜想中點(diǎn)時(shí)滿足題意,然后根據(jù)定理加以證明。

解析試題分析:.(I)
的中點(diǎn),
,又平面
從而//平面                       6分
(II)存在,中點(diǎn)

且兩半圓所在平面互相垂直
平面
平面
,由平面
平面
平面平面ACD            12分
考點(diǎn):線面平行和面面垂直的判定定理
點(diǎn)評:解決的關(guān)鍵是對于線面平行和面面垂直的定理的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側(cè)棱⊥平面.

(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形均為菱形,,且.

(1)求證:
(2)求證:;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB。

求證:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角,如圖二,在二面角中.

(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面,,,,


(1)若E是PC的中點(diǎn),證明:平面;
(2)試在線段PC上確定一點(diǎn)E,使二面角P- AB- E的大小為,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-1:幾何證明選講
如圖,在等腰梯形ABCD中,對角線AC⊥BD,且相交于點(diǎn)O ,E是AB邊的中點(diǎn),EO的延長線交CD于F.

(1)求證:EF⊥CD;
(2)若∠ABD=30°,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,邊長為a的正方體ABCD-A1B1C1D1中,E為CC1的中點(diǎn).

(1)求直線A1E與平面BDD1B1所成的角的正弦值
(2)求點(diǎn)E到平面A1DB的距離

查看答案和解析>>

同步練習(xí)冊答案