【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點、分別為邊、的中點,點是線段上的動點.

(1)求證:

(2)求三棱錐的體積的最大值.

【答案】(1)見解析;(2)

【解析】【試題分析】(1)依據(jù)題設(shè)條件,運用線面垂直的性質(zhì)定理推證;(2)借助題設(shè)條件,運用三棱錐的體積公式建立目標(biāo)函數(shù),通過探求函數(shù)的變量之間的聯(lián)系分析探求最大值:

(1)證明:連接、相交于點

因為四邊形為正方形,所以,

又因為平面平面,平面平面,

所以平面

平面,所以

因為四邊形為菱形,所以

因為,所以平面

因為分別為、的中點,所以,則平面

平面,所以

(2)解:在菱形中,由,得. 

又因為,所以,

因為平面,即平面,所以

顯然,當(dāng)點與點重合時,取最大值2,此時,

即三棱錐的體積的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中, 平面

1)在上求作點,使平面,請寫出作法并說明理由;

2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖.

為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的“星級賣場”.

(1)當(dāng)時,記甲型號電視機的“星級賣場”數(shù)量為,乙型號電視機的“星級賣場”數(shù)量為,比較的大小關(guān)系;

(2)在這10個賣場中,隨機選取2個賣場,記為其中甲型號電視機的“星級賣場”的個數(shù),求的分布列和數(shù)學(xué)期望;

(3)若,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷為何值時,達到最小值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是橢圓 的左、右焦點,點是橢圓上一點,且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于,兩點,若,其中為坐標(biāo)原點,判斷到直線的距離是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三(1)班班主任李老師為了了解本班學(xué)生喜愛中國古典文學(xué)是否與性別有關(guān),對全班50人進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡中國古典文學(xué)

不喜歡中國古典文學(xué)

合計

女生

5

男生

10

合計

50

已知從全班50人中隨機抽取1人,抽到喜歡中國古典文學(xué)的學(xué)生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為喜歡中國古典文學(xué)與性別有關(guān)?請說明理由;

(3)已知在喜歡中國古典文學(xué)的10位男生中,,還喜歡數(shù)學(xué),,還喜歡繪畫,,還喜歡體育.現(xiàn)從喜歡數(shù)學(xué)、繪畫和體育的男生中各選出1名進行其他方面的調(diào)查,求不全被選中的概率.

參考公式及數(shù)據(jù):,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;

(Ⅲ)若,,使成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,EAA1的中點,畫出過D1、C、E的平面與平面ABB1A1的交線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某幾何體的三視圖,則該幾何體的體積為( )

A. 12 B. 15 C. 18 D. 21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù), 是自然對數(shù)的底數(shù)),曲線在點處的切線方程是.

(1)求的值;(2)求的單調(diào)區(qū)間;

(3)設(shè)(其中的導(dǎo)函數(shù))。證明:對任意,

查看答案和解析>>

同步練習(xí)冊答案