A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{13}$ |
分析 作出不等式組對應的平面區(qū)域,利用z的幾何意義進行求解即可.
解答 解:作出不等式組對應的平面區(qū)域如圖,
z的幾何意義為區(qū)域內(nèi)的點到原點的距離,
由圖象知A到O的距離最大,
由$\left\{\begin{array}{l}{y=2}\\{x-y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即A(3,2),
則z的最大值為z=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{9+4}$=$\sqrt{13}$,
故選:D.
點評 本題主要考查線性規(guī)劃以及兩點間距離公式的應用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,0) | B. | (0,-1) | C. | (1,1) | D. | (1,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,$\frac{2}{3}$] | D. | [$\frac{1}{2}$,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com