若不等式 對任意的實(shí)數(shù) 恒成立,則實(shí)數(shù) 的最小值為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)個正數(shù)排成一個行列的數(shù)陣:
第1列 | 第2列 | 第3列 | … | 第列 | |
第1行 | … | ||||
第2行 | … | ||||
第3行 | … | ||||
… | … | … | … | … | … |
第行 | … |
其中表示該數(shù)陣中位于第行第列的數(shù)。已知該數(shù)陣每一行的數(shù)成等差數(shù)列,每一列的數(shù)成公比為2的等比數(shù)列,
(1)求; (2)設(shè),求;
(3)在(2)的條件下,若不等式對任意的恒成立,求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(湖南卷理21)已知函數(shù)f(x)=ln2(1+x)-.
(I ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若不等式對任意的都成立(其中e是自然對數(shù)的底數(shù)).求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧省五校協(xié)作體高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)證明函數(shù)在區(qū)間上單調(diào)遞減;
(2)若不等式對任意的都成立,(其中是自然對數(shù)的底數(shù)),求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(。┤舨坏仁對任意的恒成立,求實(shí)數(shù)的取值范圍;
(ⅱ)若是兩個不相等的正數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省豫東、豫北十所名校高三測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
對定義在區(qū)間l,上的函數(shù),若存在開區(qū)間和常數(shù)C,使得對任意的都有,且對任意的x(a,b)都有恒成立,則稱函數(shù)為區(qū)間I上的“Z型”函數(shù).
(I)求證:函數(shù)是R上的“Z型”函數(shù);
(Ⅱ)設(shè)是(I)中的“Z型”函數(shù),若不等式對任意的xR恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com