【題目】設拋物線的頂點在坐標原點,焦點軸正半軸上,過點的直線交拋物線于兩點,線段的長是, 的中點到軸的距離是.

(1)求拋物線的標準方程;

2過點作斜率為的直線與拋物線交于兩點,直線交拋物線于,

求證 軸為的角平分線;

②若交拋物線于,,求的值.

【答案】(1);(2)證明見解析, .

【解析】試題分析:(1由定義,,所以,拋物線的方程;(2)①設, 得到,所以軸為的角平分線;②,設直線,則。

試題解析:

(1)設拋物線方程為, 由拋物線定義可,

中點到軸距離為,,所以拋物線的方程 .

(2) ①設,直線,

,知,

,

,所以軸為的角平分線.

②同理可得軸為的角平分線,三點共線,

由拋物線的對稱性知,

,

,

設直線, ,

,則,

,則 ,,則.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某班同學利用春節(jié)進行社會實踐,對本地歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調(diào)查,將生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖。

(一)人數(shù)統(tǒng)計表: (二)各年齡段人數(shù)頻率分布直方圖:

(Ⅰ)在答題卡給定的坐標系中補全頻率分布直方圖,并求出、的值;

(Ⅱ)從歲年齡段的“低碳族”中采用分層抽樣法抽取人參加戶外低碳體驗活動。若將這個人通過抽簽分成甲、乙兩組,每組的人數(shù)相同,求歲中被抽取的人恰好又分在同一組的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:
①存在實數(shù)x,使 ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin2x的圖象向左平移 個單位,得到函數(shù) 的圖象;
④定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(﹣x),當0≤x≤1時,f(x)=2x,
則f(2015)=﹣2.
其中正確命題是(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求f(x)的極值;
(2)當0<x<e時,求證:f(e+x)>f(e﹣x);
(3)設函數(shù)f(x)圖象與直線y=m的兩交點分別為A(x1 , f(x1)、B(x2 , f(x2)),中點橫坐標為x0 , 證明:f'(x0)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】收入是衡量一個地區(qū)經(jīng)濟發(fā)展水平的重要標志之一,影響收入的因素有很多,為分析學歷對收入的作用,某地區(qū)調(diào)查機構欲對本地區(qū)進行了此項調(diào)查.

(1)你認為應采用何種抽樣方法進行調(diào)查?

(2)經(jīng)調(diào)查得到本科學歷月均收入條形圖如圖,試估算本科學歷月均收入的值?

(3)設學年為,令,月均收入為,已知調(diào)查機構調(diào)查結果如下表

學歷 (年)

小學

初中

高中

本科

碩士生

博士生

6

9

12

16

19

22

2.0

2.7

3.7

5.8

7.8

2210

2410

2910

6960

從散點圖中可看出的關系可以近似看成是一次函數(shù)圖像. 若回歸直線方程為,試預測博士生的平均月收入.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.

(1)求證:對于任意t∈R,方程f(x)=1必有實數(shù)根;

(2)若<t<,求證:方程f(x)=0在區(qū)間(-1,0)及內(nèi)各有一個實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與直線y=﹣2的兩個相鄰公共點之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是(
A.[kπ+ ,kπ+ ],k∈z
B.[kπ﹣ ,kπ+ ],k∈z
C.[2kπ+ ,2kπ+ ],k∈z
D.[2kπ﹣ ,2kπ+ ],k∈z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,點關于坐標原點對稱,直線垂直于軸,垂足為,與拋物線交于不同的兩點, ,且.

(1)求點的橫坐標.

(2)若以, 為焦點的橢圓過點

(。┣髾E圓的標準方程;

(ⅱ)過點作直線與橢圓交于, 兩點,設,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點M是線段AB的中點,線段CMBD交于點P.(1) =(3,5),求點C的坐標;(2) ||=||時,求點P的軌跡.

查看答案和解析>>

同步練習冊答案