精英家教網 > 高中數學 > 題目詳情

【題目】給出下列命題:
①存在實數x,使 ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數y=sin2x的圖象向左平移 個單位,得到函數 的圖象;
④定義在R上的奇函數f(x)滿足f(x+2)=f(﹣x),當0≤x≤1時,f(x)=2x,
則f(2015)=﹣2.
其中正確命題是(寫出所有正確命題的序號).

【答案】④
【解析】解:對于①,由 sinx+cosx= sin(x+ ;不可能,故錯;
對于②,舉反例:α=4200 , β=100是第一象限角,且α>β,則cosα>cosβ,故錯;
對于③,函數y=sin2x的圖象向左平移 個單位,得到函數y=2sin2(x+ )的圖象,故錯;
對于④,定義在R上的奇函數f(x)滿足f(x+2)=f(﹣x)f(x+2)=f(﹣x)=﹣f(x)f(x+4)=f(x)周期T=4;則f(2015)=f(3)=f(﹣1)=﹣f(1)=﹣2,故正確.
故答案:④.
【考點精析】解答此題的關鍵在于理解命題的真假判斷與應用的相關知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側棱底面,且側棱的長是,點分別是的中點.

(Ⅰ)證明: 平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sinxcosx+sin2x+ (x∈R).
(Ⅰ)當x∈[﹣ , ]時,求f(x)的最大值.
(Ⅱ)設△ABC的內角A,B,C所對的邊分別為a,b,c,且c= ,f(C)=2,sinB=2sinA,求a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量,,角,的內角,其所對的邊分別為,,.

(1)當取得最大值時,求角的大小;

(2)在(1)成立的條件下,當時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C.

1)若直線過定點,且與圓C相切,求方程;

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直線與圓 且與橢圓相交于兩點.

(1)若直線恰好經過橢圓的左頂點,求弦長

(2)設直線的斜率分別為,判斷是否為定值,并說明理由

(3)求,面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,.

1求數列的通項公式;

2,,記數列的前項和.若對, 恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線的頂點在坐標原點,焦點軸正半軸上,過點的直線交拋物線于兩點,線段的長是, 的中點到軸的距離是.

(1)求拋物線的標準方程;

2過點作斜率為的直線與拋物線交于兩點,直線交拋物線于,

求證 軸為的角平分線;

②若交拋物線于,,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場經銷一批進價為每件30元的商品在市場試銷中發(fā)現(xiàn),此商品的銷售單價x(元)與日銷售量y(件)之間有如下表所示的關系:

x

30

40

45

50

y

60

30

15

0

在所給的坐標圖紙中,根據表中提供的數據,描出實數對(x,y)的對應點,并確定yx的一個函數關系式;

(2)設經營此商品的日銷售利潤為P元,根據上述關系,寫出P關于x的函數關系式,并指出銷售單價x為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

同步練習冊答案