A. | [2,$\frac{7}{3}$] | B. | [$\frac{7}{3}$,3] | C. | [2,3] | D. | [2,4] |
分析 先得出函數(shù)f(x)=ex-1+x-2的零點(diǎn)為x=1.再設(shè)g(x)=x2-ax-a+3的零點(diǎn)為β,根據(jù)函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點(diǎn)關(guān)聯(lián)函數(shù)”,及新定義的零點(diǎn)關(guān)聯(lián)函數(shù),有|1-β|≤1,從而得出g(x)=x2-ax-a+3的零點(diǎn)所在的范圍,最后利用數(shù)形結(jié)合法求解即可.
解答 解:函數(shù)f(x)=log2(x+1)-e1-x的零點(diǎn)為x=1.
設(shè)g(x)=x2-ax-a+3的零點(diǎn)為β,
若函數(shù)f(x)=log2(x+1)-e1-x與g(x)=x2-ax-a+3互為“零點(diǎn)關(guān)聯(lián)函數(shù)”,
根據(jù)零點(diǎn)關(guān)聯(lián)函數(shù),則|1-β|≤1,
∴0≤β≤2,如圖.
由于g(x)=x2-ax-a+3必過點(diǎn)A(-1,4),
由于g(x)=x2-ax-a+3必過點(diǎn)A(-1,4),
故要使其零點(diǎn)在區(qū)間[0,2]上,則
g(0)×g(2)≤0或$\left\{\begin{array}{l}g(0)>0\\ g(2)>0\\△≥0\\ 0≤\frac{a}{2}≤2\end{array}\right.$,
解得:2≤a≤3,
實(shí)數(shù)a的取值范圍為[2,3],
故選:C
點(diǎn)評 先得出函數(shù)f(x)=ex-1+x-2的零點(diǎn)為x=1.再設(shè)g(x)=x2-ax-a+3的零點(diǎn)為β,根據(jù)函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點(diǎn)關(guān)聯(lián)函數(shù)”,及新定義的零點(diǎn)關(guān)聯(lián)函數(shù),有|1-β|≤1,從而得出g(x)=x2-ax-a+3的零點(diǎn)所在的范圍,最后利用數(shù)形結(jié)合法求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6}{7}$ | B. | $\frac{5}{6}$ | C. | $\frac{7}{8}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com