已知點(diǎn)F是橢圓的右焦點(diǎn),過(guò)原點(diǎn)的直線交橢圓于點(diǎn)A、P,PF垂直于x軸,直線AF交橢圓于點(diǎn)B,,則該橢圓的離心率=___▲___.
此題考查橢圓的相關(guān)性質(zhì)和直線方程的相關(guān)知識(shí),利用結(jié)論:若橢圓的方程為,即焦點(diǎn)在軸上,若直線與橢圓相交,被橢圓所截得弦為,其中點(diǎn)設(shè)為,則該直線的斜率與該弦的中點(diǎn)與原點(diǎn)的斜率之積為常數(shù),即;求解較簡(jiǎn)單;

由已知得,,取中點(diǎn),可知,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205950049492.png" style="vertical-align:middle;" />,所以,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232059500801242.png" style="vertical-align:middle;" />,由
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的左、右焦點(diǎn)分別為,下頂點(diǎn)為,點(diǎn)是橢圓上任一點(diǎn),圓是以為直徑的圓.
⑴當(dāng)圓的面積為,求所在的直線方程;
⑵當(dāng)圓與直線相切時(shí),求圓的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓=1(a>b>0)上的點(diǎn)M (1, )到它的兩焦點(diǎn)F1,F(xiàn)2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn)。
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時(shí)直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離等于3,那么點(diǎn)P到另一個(gè)焦點(diǎn)的距離等于      . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)的距離之比為,則此橢圓離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
給定橢圓. 稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”. 若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)作直線,使得與橢圓都只有一個(gè)交點(diǎn),試判斷是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)動(dòng)點(diǎn)滿足,當(dāng)點(diǎn)的縱坐標(biāo)為時(shí),點(diǎn)到坐標(biāo)原點(diǎn)的距離為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,直線,橢圓分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),的重心分別為若原點(diǎn)在以線段為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓C:為橢圓C的兩焦點(diǎn),P為橢圓C上一點(diǎn),連接
延長(zhǎng)交橢圓于另外一點(diǎn)Q,則⊿的周長(zhǎng)_______

查看答案和解析>>

同步練習(xí)冊(cè)答案