5.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式(x-1)f′(x)<0的解集為( 。
A.(-∞,0)∪($\frac{1}{2}$,1)B.(-∞,0)∪(1,2)C.(-∞,$\frac{1}{2}$)∪(1,2)D.(-∞,$\frac{1}{2}$)∪(1,+∞)

分析 根據(jù)條件判斷函數(shù)的單調(diào)性,利用數(shù)形結(jié)合即可解不等式.

解答 解:∵(x-1)•f′(x)<0,
∴不等式等價為x>1時,f′(x)<0,此時函數(shù)單調(diào)遞減,由圖象可知此時解集為:(1,2).
當(dāng)x<1時,f′(x)>0,此時函數(shù)單調(diào)遞增,由圖象可知x<$\frac{1}{2}$,
即不等式的解集為(-∞,$\frac{1}{2}$)∪(1,2).
故選:C.

點評 本題主要考查不等式的求解,根據(jù)函數(shù)單調(diào)性,導(dǎo)數(shù)和函數(shù)圖象之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點A(4,8)是拋物線C:y2=2px與直線l:y=k(x+4)的一個交點,則拋物線的焦點到直線l的距離是( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.圓C1和直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求圓C1和直線C2的直角坐標(biāo)方程.
(2)求圓C1和直線C2交點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-2|+2|x+1|.
(1)解不等式f(x)>4;
(2)若關(guān)于x的不等式f(x)≥m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow m$=($\sqrt{3}sin\frac{x}{4}$,1),$\overrightarrow n$=(cos$\frac{x}{4}$,${cos^2}\frac{x}{4}$),記f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{2π}{3}$個單位得到y(tǒng)=g(x)的圖象,討論函數(shù)y=g(x)-k在$[0,\frac{7π}{3}]$的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{lnx}{1-x}$,ϕ(x)=(x-1)2•f′(x)
(1)若函數(shù)ϕ(x)在區(qū)間(3m,m+$\frac{1}{2}$)上單調(diào)遞減,求實數(shù)m的取值范圍;
(2)若對任意的x∈(0,1),恒有(1+x)•f(x)+2a<0(a>0),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C的頂點在坐標(biāo)原點O,其圖象關(guān)于y軸對稱且經(jīng)過點M(2,1).
(1)求拋物線C的方程;
(2)若一個等邊三角形的一個頂點位于坐標(biāo)原點,另兩個頂點在拋物線上,求該等邊三角形的面積;
(3)過點M作拋物線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當(dāng)k1k2=-2時,試證明直線AB恒過定點,并求出該定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.隨機調(diào)查高河鎮(zhèn)某社區(qū)80個人,以研究這一社區(qū)居民在20:00--22:00時間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視看書合計
105060
101020
合計206080
(1)從這80人中按照性別進(jìn)行分層抽樣,抽出4人,則男女應(yīng)各抽取多少人;
(2)從第(1)問抽取的4位居民中隨機抽取2位,恰有1男1女的概率是多少;
(3)由以上數(shù)據(jù),能否有99%的把握認(rèn)為在20:00-22:00時間段的休閑方式與性別有關(guān)系.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在正項等差數(shù)列{an}中,a12=2a5-a9,且a5+a6+a7=18,則(  )
A.a1,a2,a3成等比數(shù)列B.a2,a3,a6成等比數(shù)列
C.a3,a4,a8成等比數(shù)列D.a4,a6,a9成等比數(shù)列

查看答案和解析>>

同步練習(xí)冊答案