A. | [-1,$\frac{1}{3}$] | B. | [-$\frac{1}{2}$,$\frac{1}{3}$] | C. | [-$\frac{1}{2}$,1) | D. | [-$\frac{1}{2}$,+∞) |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用直線的斜率公式,結(jié)合數(shù)形結(jié)合進行求解即可.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖,
ω的幾何意義是區(qū)域內(nèi)的點到定點D(-1,1)的斜率,
由圖象知當(dāng)直線和BC:x-y=0平行時,直線斜率最大,此時直線斜率為1,但取不到,
當(dāng)直線過A(1,0)時,直線斜率最小,
此時AD的斜率k=$\frac{0-1}{1+1}$=$-\frac{1}{2}$,
則ω的范圍是[-$\frac{1}{2}$,1),
故選:C
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線斜率公式以及數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{5\sqrt{3}}}{2}$ | B. | $\frac{{5\sqrt{21}}}{7}$ | C. | $\frac{{5\sqrt{7}}}{7}$ | D. | $\frac{{5\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 工廠生產(chǎn)輪胎抽樣調(diào)查中,若直徑D落在[μ-2σ,μ+2σ]外部,則認為生產(chǎn)可能異常 | |
B. | 在回歸分析中,r越大,變量之間線性相關(guān)程度越高 | |
C. | 在正態(tài)分布中,σ越大,相應(yīng)的分布密度曲線越高瘦 | |
D. | 在線性回歸分析中,利用最小二乘法求得的回歸直線滿足br>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 3$\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com