1.在△ABC中,D為BC的中點(diǎn),tan∠BAD=$\frac{1}{tan∠C}$,E為邊AC上的一點(diǎn),且AE=$\frac{1}{2}$EC,BE=2,則△ABC面積的最大值為3.

分析 由tan∠BAD=$\frac{1}{tan∠C}$,可得∠BAD+∠C=$\frac{π}{2}$,因此∠DAC+∠ABD=$\frac{π}{2}$.在△ADC中,$\frac{CD}{sin∠DAC}$=$\frac{AD}{sinC}$,在△ABD中,$\frac{BD}{sin∠BAD}$=$\frac{AD}{sin∠ABD}$,可得sin2C=sin2∠ABD,∠C=∠ABD,或∠C+∠ABD=$\frac{π}{2}$,△ABC為等腰三角形或直角三角形.分類討論,利用三角形面積計(jì)算公式即可得出.

解答 解:由tan∠BAD=$\frac{1}{tan∠C}$,∴∠BAD+∠C=$\frac{π}{2}$,∴∠DAC+∠ABD=$\frac{π}{2}$
在△ADC中,$\frac{CD}{sin∠DAC}$=$\frac{AD}{sinC}$,
在△ABD中,$\frac{BD}{sin∠BAD}$=$\frac{AD}{sin∠ABD}$,
可得sin2C=sin2∠ABD,
∴∠C=∠ABD,或∠C+∠ABD=$\frac{π}{2}$,
∴△ABC為等腰三角形或直角三角形.
設(shè)AE=x.
①當(dāng)△ABC為直角三角形時(shí),AB=$\sqrt{4-{x}^{2}}$,
∴S△ABC=$\frac{1}{2}•3x•\sqrt{4-{x}^{2}}$,
∴${S}_{△ABC}^{2}$=$\frac{9}{4}$x2(4-x2)$≤\frac{9}{4}$$(\frac{{x}^{2}+4-{x}^{2}}{2})^{2}$=9,當(dāng)且僅當(dāng)x=$\sqrt{2}$時(shí)等號(hào)成立.此時(shí)S△ABC=3.
②當(dāng)△ABC為等腰三角形時(shí),S△ABC=$\frac{1}{2}•3x•3x$sin∠BAC=$\frac{9}{2}{x}^{2}sin∠ABC$,
cos∠BAC=$\frac{9{x}^{2}+{x}^{2}-4}{2×3x×x}$=$\frac{10{x}^{2}-4}{6{x}^{2}}$,sin2∠BAC=1-$(\frac{10{x}^{2}-4}{6{x}^{2}})^{2}$,
∴S△ABC=$\frac{9}{2}{x}^{2}$$\sqrt{1-(\frac{10{x}^{2}-4}{6{x}^{2}})^{2}}$=3$\sqrt{-4{x}^{4}+5{x}^{2}-1}$$(\frac{1}{2}<x<1)$,
∴當(dāng)x2=$\frac{5}{8}$時(shí),S△ABC有最大值$\frac{9}{4}$.
綜上可得:△ABC面積的最大值為3.
故答案為:3.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理、同角三角函數(shù)基本關(guān)系式,基本不等式的性質(zhì)、三角形面積計(jì)算公式,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.P是棱長(zhǎng)為2的正四面體內(nèi)任意一點(diǎn),則它到該正四面體各個(gè)面的距離之和等于$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.與向量$\overrightarrow{a}$=(5,12)平行的單位向量為±($\frac{5}{13}$,$\frac{12}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖流程圖表示的算法是( 。
A.輸出c,b,aB.輸出最大值C.輸出最小值D.比較a,b,c大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若復(fù)數(shù)z=a-$\sqrt{2}$+3i為純虛數(shù),其中a∈R,i為虛數(shù)單位,則$\frac{a+{i}^{2007}}{1+ai}$的值為-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.從一副撲克牌(52張)中任抽一張,設(shè)A=“抽得老K”,B=“抽得紅牌”,C=“抽到J”,判斷下列每對(duì)事件是否相互獨(dú)立?是否互斥?是否對(duì)立?為什么?
(1)A與B;
(2)C與A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則下列式子正確的是( 。
A.0<f′(1)<f′(2)<f(2)-f(1)B.0<f′(2)<f(2)-f(1)<f′(1)C.0<f′(2)<f′(1)<f(2)-f(1)D.0<f(2)-f(1)<f′(1)<f′(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,已知AB=16,AC=12,BC=10,點(diǎn)I為△ABC內(nèi)一點(diǎn),且存在實(shí)數(shù)λ、μ,使得$\overrightarrow{AI}$=$\overrightarrow{AB}$+λ($\frac{\overrightarrow{BA}}{|\overrightarrow{BA}|}$+$\frac{\overrightarrow{BC}}{|\overrightarrow{BC}|}$),$\overrightarrow{AI}$=$\overrightarrow{AC}$+μ($\frac{\overrightarrow{CA}}{|\overrightarrow{CA}|}$+$\frac{\overrightarrow{CB}}{|\overrightarrow{CB}|}$),則$\frac{\overrightarrow{CI}•\overrightarrow{CB}}{|\overrightarrow{BC}|}$的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和.若a1=6,a3+a5=0,則S6=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案