20.計(jì)算下列各式的值 (其中,e為自然對(duì)數(shù)的底數(shù)):
(1)$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{({π+e})^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$;       
(2)$2lg5+lg4+ln\sqrt{e}$.

分析 (1)直接由有理指數(shù)冪的運(yùn)算性質(zhì)化簡(jiǎn)求值得答案;       
(2)直接由對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值得答案.

解答 解:(1)$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{({π+e})^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$=$\frac{5}{3}-[(\frac{2}{3})^{3}]^{\frac{1}{3}}-1+[(\frac{1}{2})^{2}]^{-\frac{1}{2}}$=$\frac{5}{3}-\frac{2}{3}-1+2=2$;
(2)$2lg5+lg4+ln\sqrt{e}$=lg25+lg4+ln$\sqrt{e}$=lg(25×4)+ln$\sqrt{e}$=2+$\frac{1}{2}$=$\frac{5}{2}$.

點(diǎn)評(píng) 本題考查了有理指數(shù)冪的化簡(jiǎn)求值,考查了對(duì)數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.△ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知b=c,sinA=1-$\frac{a^2}{{2{b^2}}}$,則A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)f(x)是定義在R上的增函數(shù),且對(duì)于任意的x都有f(-x)+f(x)=0恒成立,如果實(shí)數(shù)a,b滿足不等式組$\left\{\begin{array}{l}{f({a}^{2}-6a+23)+f(^{2}-8b-2)≤0}\\{f(b+1)>f(5)}\end{array}\right.$,那么a2+b2的取值范圍是( 。
A.[9,49]B.(17,49]C.[9,41]D.(17,41]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,$\frac{{{S_{10}}}}{S_5}=\frac{33}{32}$.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{3n-1}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知等比數(shù)列{an}中,a1•a2•…•a5=32,則a3=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)P(x,y)滿足x2+y2<2,則滿足到直線x-y+2$\sqrt{2}$=0的距離d∈[1,3]的點(diǎn)P概率為( 。
A.$\frac{1}{2}+\frac{π}{2}$B.$\frac{1}{2}-\frac{π}{2}$C.$\frac{1}{4}-\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.二進(jìn)制數(shù)11111轉(zhuǎn)換成十進(jìn)制數(shù)是31 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(文科)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2.
(Ⅰ)求證:AB1∥平面BC1D;
(Ⅱ)設(shè)BC=3,求四棱錐B-DAA1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$.
(1)若a3,m,S3成等比數(shù)列,求m值;      
(2)求a1的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案