精英家教網 > 高中數學 > 題目詳情

【題目】已知關于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},求不等式a(x2+1)+b(x﹣1)+c>2ax的解集.

【答案】解:∵關于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},
∴﹣1+2=﹣ ,﹣1×2= ,a<0,
解得b=﹣a,c=﹣2a
不等式a(x2+1)+b(x﹣1)+c>2ax化為x2﹣3x<0
解得0<x<3,
∴該不等式的解集為(0,3)
【解析】關于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},可得﹣1,2是一元二次方程ax2+bx+c=0的兩個實數根,且a<0,利用根與系數的關系可得a,b,即可不等式a(x2+1)+b(x﹣1)+c>2ax得出.
【考點精析】掌握解一元二次不等式是解答本題的根本,需要知道求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規(guī)律:當二次項系數為正時,小于取中間,大于取兩邊.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數,

1)求曲線在點處的切線方程;

2)當時,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列前5項和為50, ,數列的前項和為, , .

(Ⅰ)求數列, 的通項公式;

(Ⅱ)若數列滿足, ,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等比數列{an}的各項均為正數,且2a1+3a2=1, =9a2a6.

(1)求數列{an}的通項公式;

(2)設bn=log3a1+log3a2+…+log3an,求數列的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若不等式|2x﹣1|﹣|x+a|≥a對任意的實數x恒成立,則實數a的取值范圍是(
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在體積為72的直三棱柱ABC﹣A1B1C1中,AB=3,AC=4,AA1=12.

(1)求角∠BAC的大�。�
(2)若該三棱柱的六個頂點都在球O的球面上,求球O的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】要得到函數y=sin2x的圖象,只要將y=sin(2x+ )函數的圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R).
(1)證明:不論m取什么實數時,直線l與圓恒交于兩點;
(2)求直線l被圓C截得的線段的最短長度以及此時直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三棱錐P﹣ABC的高PO為h,點D為側棱PC的中點,PO與BD所成角的余弦值為 ,則正三棱錐P﹣ABC的體積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
关 闭