已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)).
(1)若a=-2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(2)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍;
(3)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),函數(shù)的最值及其幾何意義
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)當(dāng)a=-2時(shí),f′(x)=2x-
2
x
>0,故函數(shù) 在(1,+∞)上是增函數(shù).
(2)由題意可化簡(jiǎn)得a≥
x2-2x
x-lnx
(x∈[1,e])令g(x)=
x2-2x
x-lnx
(x∈[1,e]),利用導(dǎo)數(shù)判斷其單調(diào)性求出最小值為g(1)=-1.
(3)f′(x)=
2x2+a
x
(x>0),當(dāng)x∈[1,e],2x2+a∈[a+2,a+2e2].若a≥-2,f'(x)在[1,e]上非負(fù),故函數(shù)f(x)在[1,e]上是增函數(shù).若-2e2<a<-2,當(dāng)x=
-a
2
時(shí)f'(x)=0,當(dāng)1≤x<
-a
2
時(shí),f'(x)<0,此時(shí)f(x)是減函數(shù); 當(dāng)
-a
2
<x≤e時(shí),f'(x)>0,此時(shí)f(x)是增函數(shù).所以此時(shí)有最值.若a≤-2e2,f'(x)在[1,e]上非正,所以[f(x)]min=f(e)=a+e2
解答: 解:(1)當(dāng)a=-2時(shí),f(x)=x2-2lnx,當(dāng)x∈(1,+∞),f′(x)=2x-
2
x
>0,
∴函數(shù)f(x)在(1,+∞)上是增函數(shù);
(2)不等式f(x)≤(a+2)x,可化為a(x-lnx)≥x2-2x.
∵x∈[1,e],∴l(xiāng)nx≤1≤x且等號(hào)不能同時(shí)取,所以lnx<x,即x-lnx>0,
因而a≥
x2-2x
x-lnx
(x∈[1,e])
令g(x)=
x2-2x
x-lnx
(x∈[1,e]),g′(x)=
(x-1)(x+2-2lnx)
(x-lnx)2

當(dāng)x∈[1,e]時(shí),x-1≥0,lnx≤1,x+2-2lnx>0,
從而g'(x)≥0(僅當(dāng)x=1時(shí)取等號(hào)),所以g(x)在[1,e]上為增函數(shù),
故g(x)的最小值為g(1)=-1,所以a的取值范圍是[-1,+∞).
(3)f′(x)=
2x2+a
x
(x>0),當(dāng)x∈[1,e],2x2+a∈[a+2,a+2e2].
若a≥-2,f'(x)在[1,e]上非負(fù)(僅當(dāng)a=-2,x=1時(shí),f'(x)=0),故函數(shù)f(x)在[1,e]上是增函數(shù),此時(shí)[f(x)]min=f(1)=1. 
若-2e2<a<-2,當(dāng)x=
-a
2
時(shí),f'(x)=0;
當(dāng)1≤x<
-a
2
時(shí),f'(x)<0,此時(shí)f(x)是減函數(shù);
當(dāng)
-a
2
<x≤e時(shí),f'(x)>0,此時(shí)f(x)是增函數(shù).
故[f(x)]min=f(
-a
2
)=
a
2
ln(-
a
2
)-
a
2

若a≤-2e2,f'(x)在[1,e]上非正(僅當(dāng)a=-2e2,x=e時(shí),f'(x)=0),
故函數(shù)f(x)在[1,e]上是減函數(shù),此時(shí)[f(x)]min=f(e)=a+e2
綜上可知,當(dāng)a≥-2時(shí),f(x)的最小值為1,相應(yīng)的x值為1;當(dāng)-2e2<a<-2時(shí),f(x)的最小值為
a
2
ln(-
a
2
)-
a
2
,相應(yīng)的x值為
-a
2
;當(dāng)a≤-2e2時(shí),f(x)的最小值為a+e2,相應(yīng)的x值為e.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)及研究單調(diào)性與函數(shù)的最值,還考查求參數(shù)的范圍,解決此類問(wèn)題的關(guān)鍵是分離參數(shù)后轉(zhuǎn)化為恒成立問(wèn)題,即求新函數(shù)的最值問(wèn)題,是近年高考考查的熱點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[-2,2]時(shí),|2x-1|-3|x+1|-m≥0有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把在線段上到兩端點(diǎn)距離之比為
5
-1
2
≈0.618的點(diǎn)稱為黃金分割點(diǎn).類似地,在解析幾何中,我們稱離心率為
5
-1
2
的橢圓為黃金橢圓,已知橢圓
x2
a2
+
y2
b2
=1 (a>b>0)的焦距為2c,則下列四個(gè)命題:
①a、b、c成等比數(shù)列是橢圓為黃金橢圓的充要條件;
②若橢圓是黃金橢圓且F2為右焦點(diǎn),B為上頂點(diǎn),A1為左頂點(diǎn),則
BA1
BF2
=0
③若橢圓是黃金橢圓,直線l過(guò)橢圓中心,與橢圓交于點(diǎn)E、F,P為橢圓上任意一點(diǎn)(除頂點(diǎn)外),且PE與PF的斜kPE、kPF存在,則kPE•kPF為定值.
④若橢圓是黃金橢圓,P、Q為橢圓上任意兩點(diǎn),M為PQ中點(diǎn),且PQ與OM的斜率kPQ與kOM(O為坐標(biāo)原點(diǎn))存在,則kPQ•kOM為定值.
⑤橢圓四個(gè)頂點(diǎn)構(gòu)成的菱形的內(nèi)切圓過(guò)橢圓的焦點(diǎn)是橢圓為黃金橢圓的充要條件.
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+(2a-1)x+3在(1,+∞)上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義min{a,b}為兩數(shù)中最小數(shù),若f(x)=min{4x+1,x+2},畫出函數(shù)f(x)的圖象并求出值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x>0,則y=2x+
2
x
的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知棱臺(tái)的兩個(gè)底面面積分別是80cm2和245cm2,截得這個(gè)棱臺(tái)的棱錐的高為35cm,則這個(gè)棱臺(tái)的高為( 。
A、10cmB、15cm
C、20cmD、25cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知等差數(shù)列{an}和等比數(shù)列{bn}滿足:3a1-a82+3a15=0,且a8=b10,則b3b17=( 。
A、9B、12C、l6D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-ax2-4(a+1)x+3在[2,+∞)上遞減,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案