【題目】某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關系為y1=18-,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關系為y2=(注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
【答案】(1);(2) 分別用20萬元和80萬元資金投資A、B兩種金融產(chǎn)品,可以使公司獲得最大利潤,最大利潤為28萬元.
【解析】試題分析:(1)根據(jù)題意,萬元資金投入產(chǎn)品,利潤萬元;萬元資金投入產(chǎn)品,利潤,由可得所求函數(shù)關系;
(2)由(1)所得函數(shù)的解析式
可考慮用基本不等式法求其最大值,并注意等號成立的條件。
試題解析:(1)其中x萬元資金投入A產(chǎn)品,則剩余的100-x(萬元)資金投入B產(chǎn)品,利潤總和
f(x)=18-+
=38--(x∈[0,100]). 6分
(2)∵f(x)=40-,x∈[0,100],
∴由基本不等式得:
f(x)≤40-2=28,取等號當且僅當=時,即x=20. 12分
答:分別用20萬元和80萬元資金投資A、B兩種金融產(chǎn)品,可以使公司獲得最大利潤,最大利潤為28萬元. 13分
科目:高中數(shù)學 來源: 題型:
【題目】重慶八中大學城校區(qū)與本部校區(qū)之間的駕車單程所需時間為,只與道路暢通狀況有關,對其容量為500的樣本進行統(tǒng)計,結果如下:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 100 | 150 | 200 | 50 |
以這500次駕車單程所需時間的頻率代替某人1次駕車單程所需時間的概率.
(1)求的分布列與;
(2)某天有3位教師獨自駕車從大學城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時間少于的人數(shù),求的分布列與;
(3)下周某天張老師將駕車從大學城校區(qū)出發(fā),前往本部校區(qū)做一個50分鐘的講座,結束后立即返回大學城校區(qū),求張老師從離開大學城校區(qū)到返回大學城校區(qū)共用時間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知|a|=4,|b|=8,a與b的夾角是120°.
(1) 計算:① |a+b|,② |4a-2b|;
(2) 當k為何值時,(a+2b)⊥(ka-b)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學共有1000名文科學生參加了該市高三第一次質量檢查的考試,其中數(shù)學成績?nèi)缦卤硭荆?/span>
數(shù)學成績分組 | [50,70) | [70,90) | [90,110) | [110,130) | [130,150] |
人數(shù) | 60 | 400 | 360 | 100 |
(Ⅰ)為了了解同學們前段復習的得失,以便制定下階段的復習計劃,年級將采用分層抽樣的方法抽取100
名同學進行問卷調(diào)查. 甲同學在本次測試中數(shù)學成績?yōu)?5分,求他被抽中的概率;
(Ⅱ)年級將本次數(shù)學成績75分以下的學生當作“數(shù)學學困生”進行輔導,請根據(jù)所提供數(shù)據(jù)估計“數(shù)
學學困生”的人數(shù);
(III)請根據(jù)所提供數(shù)據(jù)估計該學校文科學生本次考試的數(shù)學平均分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人種植一種經(jīng)濟作物,根據(jù)以往的年產(chǎn)量數(shù)據(jù),得到年產(chǎn)量頻率分布直方圖如圖所示,以各區(qū)間中點值作為該區(qū)間的年產(chǎn)量,得到平均年產(chǎn)量為455,已知當年產(chǎn)量低于350時,單位售價為20元/,若當年產(chǎn)量不低于350而低于550時,單位售價為15元/,當年產(chǎn)量不低于550時,單位售價為10元/.
(1)求圖中的值;
(2)試估計年銷售額大于5000元小于6000元的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且.點
是棱的中點,平面與棱交于點.
(1)求證:∥;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知R,函數(shù)=.
(1)當時,解不等式>1;
(2)若關于的方程+=0的解集中恰有一個元素,求的值;
(3)設>0,若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com