19.某校高二數(shù)學(xué)興趣小組有同一班級(jí)的7名同學(xué)參加,其中男生4人,女生3人.
(1)若這7名同學(xué)排成一排照相留念,三名女生相鄰的排法有多少種?
(2)若從這7名同學(xué)中選4人參加省高中數(shù)學(xué)競(jìng)賽,要求男、女生均有同學(xué)參加,且參賽的男生人數(shù)不少于參賽的女生人數(shù),則一共有多少種不同的選派方法?

分析 (1)相鄰問(wèn)題用捆綁,把3名女生捆綁在一起看一個(gè)復(fù)合元素再和男生4人全排列,問(wèn)題得以解決,
(2)由題意,分為3男1女,2男2女,根據(jù)分類計(jì)數(shù)原理可得.

解答 解:(1)把3名女生捆綁在一起看一個(gè)復(fù)合元素再和男生4人全排列,故有A33A55=720種,
(2)要求男、女生均有同學(xué)參加,且參賽的男生人數(shù)不少于參賽的女生人數(shù),分為3男1女,2男2女,
故有C43C31+C42C32=30種.

點(diǎn)評(píng) 本題考查了分步和分類計(jì)數(shù)原理,關(guān)鍵是如何分步和分類,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{4x-y-5≤0}\\{2x+y-4≥0}\\{2x-2y+5≥0}\end{array}\right.$,則目標(biāo)函數(shù)2x+y的最大值為10,目標(biāo)函數(shù)4x2+y2的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知tanα=2,求:
(1)$\frac{5sin(π-α)}{sinα+4cosα}$.
(2)sin2α-3cos($\frac{π}{2}$-α)•cos(π+α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.己知向量$\overrightarrow{a}$=(cosx,2sinx),$\overrightarrow$=(2cosx,$\sqrt{3}$cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)用五點(diǎn)法作出函數(shù)f(x)在一個(gè)周期的圖象;
(2)寫(xiě)出函數(shù)f(x)單調(diào)遞增區(qū)間和對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)f(x)是定義在R上的奇函數(shù),在區(qū)間(-∞,0)上有xf′(x)+f(x)<0且f(-2)=0.則不等式f(2x)<0的解集為{x|x<-1或0<x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{kx}{{x}^{2}+3k}$(k>0).
(1)若f(x)>m的解集為{x|x<-3或x>-2},求不等式5mx2+$\frac{k}{2}$x+3>0的解集;
(2)若存在x>3使得f(x)>1成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,如果A=60°,c=4,2$\sqrt{3}$<a<4,則此三角形有( 。
A.兩解B.一解C.無(wú)解D.無(wú)窮多解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和Sn=2an-3•2n+4.
(1)求證:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列;
(2)設(shè)Tn為數(shù)列{Sn-4}的前n項(xiàng)和,求Tn
(3)設(shè)cn=$\frac{(3n+5){2}^{n-1}}{{a}_{n}{a}_{n+1}}$,數(shù)列{cn}的前n項(xiàng)和為Qn,求證:Qn≥$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)(2x-1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a1|+|a3|+|a5|=122.

查看答案和解析>>

同步練習(xí)冊(cè)答案