A. | $\frac{3}{4}$ | B. | $\frac{8}{9}$ | C. | $\frac{7}{16}$ | D. | $\frac{11}{12}$ |
分析 由題意知本題是一個(gè)幾何概型,試驗(yàn)發(fā)生包含的所有事件對(duì)應(yīng)的集合是Ω:{(x,y)|0≤x≤30,0≤y≤30},做出集合對(duì)應(yīng)的面積是邊長為30的正方形的面積,寫出滿足條件的事件對(duì)應(yīng)的集合和面積,根據(jù)面積之比得到概率
解答 解:因?yàn)閮扇苏l也沒有講好確切的時(shí)間,
故樣本點(diǎn)由兩個(gè)數(shù)(甲乙兩人各自到達(dá)的時(shí)刻)組成.
以4:30點(diǎn)鐘作為計(jì)算時(shí)間的起點(diǎn)建立如圖所示的平面直角坐標(biāo)系,設(shè)甲乙各在第x分鐘和第y分鐘到達(dá),則樣本空間為Ω:{(x,y)|0≤x≤30,0≤y≤30},畫成圖為一正方形.
會(huì)面的充要條件是|x-y|≤20,即事件A={可以會(huì)面}所對(duì)應(yīng)的區(qū)域是圖中的陰影線部分,
∴由幾何概型公式知所求概率為面積之比,即P(A)=$\frac{3{0}^{2}-1{0}^{2}}{3{0}^{2}}=\frac{8}{9}$;
故選B.
點(diǎn)評(píng) 本題的難點(diǎn)是把時(shí)間分別用x,y坐標(biāo)來表示,從而把時(shí)間長度這樣的一維問題轉(zhuǎn)化為平面圖形的二維面積問題,轉(zhuǎn)化成面積型的幾何概型問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 類比推理、歸納推理、演繹推理都是合情推理 | |
B. | 合情推理得到的結(jié)論一定是正確的 | |
C. | 合情推理得到的結(jié)論不一定正確 | |
D. | 歸納推理得到的結(jié)論一定是正確的 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | -1+i | C. | 1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1>x2 | B. | x1<x2 | C. | ${x}_{1}^{2}$<${x}_{2}^{2}$ | D. | x1+x2=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com