2.在單位圓中,面積為1的扇形所對(duì)的弧長(zhǎng)為( 。
A.1B.2C.3D.4

分析 由已知利用扇形的面積公式即可計(jì)算得解.

解答 解:設(shè)扇形的弧長(zhǎng)為l,圓心角大小為α(rad),半徑為r,扇形的面積為S,
則r=1,S=1,
由S=$\frac{1}{2}$lr,可得:1=$\frac{1}{2}×$l×1,解得:弧長(zhǎng)l=2.
故選:B.

點(diǎn)評(píng) 本題主要考查了扇形的面積公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知拋物線y2=2x上一點(diǎn)A到焦點(diǎn)F的距離與其到對(duì)稱(chēng)軸的距離之比為9:4,且|AF|>2,點(diǎn)A到原點(diǎn)的距離為(  )
A.$\sqrt{41}$B.4$\sqrt{5}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知是定義在R上的函數(shù),且滿足①f(4)=0;②曲線y=f(x+1)關(guān)于點(diǎn)(-1,0)對(duì)稱(chēng);③當(dāng)x∈(-4,0)時(shí),$f(x)={log_2}(\frac{x}{{{e^{|x|}}}}+{e^x}-m+1)$,若y=f(x)在x∈[-4,4]上有5個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為[-3e-4,1)∪{-e-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=-$\frac{1}{2}a{x^2}+({1+a})x-lnx({a∈R})$.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)當(dāng)a=0時(shí),設(shè)函數(shù)g(x)=xf(x)若存在區(qū)間$[{m,n}]?[{\frac{1}{2},+∞})$,使得函數(shù)g(x)在[m,n]上的值域?yàn)閇k(m+2)-2,k(n+2)-2],求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=aex+x,若1<f'(0)<2,則實(shí)數(shù)a的取值范圍是(  )
A.$({0,\frac{1}{e}})$B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)化簡(jiǎn)f(α)=$\frac{{sin(\frac{π}{2}+α)+sin(-π-α)}}{{3cos(2π-α)+cos(\frac{3π}{2}-α)}}$; 
(2)若tanα=1,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知兩點(diǎn)M(2,-3),N(-3,-2),斜率為k的直線l過(guò)點(diǎn)P(1,1)且與線段MN相交,則k的取值范圍是(-∞,-4]∪[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,若$a=\sqrt{10}$,c=3,$cosA=\frac{1}{4}$,則b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$tan(α+β)=\frac{2}{5}$,$tanβ=\frac{1}{3}$,則$tan(α-\frac{π}{4})$的值為( 。
A.$\frac{8}{9}$B.-$\frac{8}{9}$C.$\frac{1}{17}$D.$\frac{16}{17}$

查看答案和解析>>

同步練習(xí)冊(cè)答案