【題目】已知關(guān)于x的不等式x2﹣4x+t≤0的解集為A,若(﹣∞,t]∩A≠,則實數(shù)t的取值范圍是

【答案】[0,4]
【解析】解:關(guān)于x的不等式x2﹣4x+t≤0的解集為A,且(﹣∞,t]∩A≠,等價于二次函數(shù)f(x)=x2﹣4x+t,在區(qū)間(﹣∞,t]內(nèi)至少存在一個數(shù)c 使得f(c)≤0,
其否定是:對于區(qū)間(﹣∞,t]內(nèi)的任意一個x都有f(x)>0,
①或 ②;
由①得 ,解得t<0;
由②得 ,解得t>4;
即t<0或t>4;
∴二次函數(shù)f(x)在區(qū)間(﹣∞,t]內(nèi)至少存在一個實數(shù)c,使f(c)≤0的實數(shù)t的取值范圍是[0,4].
故t的取值范圍是[0,4].
所以答案是:[0,4].
【考點精析】關(guān)于本題考查的解一元二次不等式,需要了解求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中位數(shù)為1010的一組數(shù)構(gòu)成等差數(shù)列,其末項為 2015,則該數(shù)列的首項為__________

【答案】5.

【解析】

設(shè)數(shù)列的首項為,則,所以,故該數(shù)列的首項為,所以答案應填:

【考點定位】等差中項.

型】填空
結(jié)束】
15

【題目】對于不等式,則對區(qū)間上的任意x都成立的實數(shù)t的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線的斜率為.

(1)求的值,并討論上的單調(diào)性;

(2)設(shè)若對任意,總存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A,B,C所對的邊分別為a,b,c,已知sinC=
(1)若a+b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩曲線f(x)=cosx,g(x)= sinx,x∈(0, )相交于點A.若兩曲線在點A處的切線與x軸分別相交于B,C兩點,則線段BC的長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 若方程f(x)=a|x﹣1|,(a∈R)有且僅有兩個不相等的實數(shù)解,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線x﹣2y+2與圓C:x2+y2﹣4y+m=0相交,截得的弦長為
(1)求圓C的方程;
(2)過點M(﹣1,0)作圓C的切線,求切線的直線方程;
(3)若拋物線y=x2上任意三個不同的點P、Q、R,且滿足直線PQ和PR都與圓C相切,判斷直線QR與圓C的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點M(﹣1,0),N(1,0),曲線E上任意一點到M的距離均是到點N距離的 倍.
(1)求曲線E的方程;
(2)已知m≠0,設(shè)直線l1:x﹣my﹣1=0交曲線E于A,C兩點,直線l2:mx+y﹣m=0交曲線E于B,D兩點,C,D兩點均在x軸下方,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足an+2﹣2an+1+an=0(n∈N*),a2=4,其前7項和為42,設(shè)數(shù)列{bn}是等比數(shù)列,數(shù)列{bn}的前n項和為Sn滿足b1=a1﹣1,S30﹣(310+1)S20+310S10=0.
(1)求數(shù)列{an},{bn}的通項公式;
(2)令cn=1+log3 ,dn= + ,求證:數(shù)列{dn}的前n項和Tn

查看答案和解析>>

同步練習冊答案