設Sn為等差數(shù)列{an}的前n項和,已知S3=a7,a8-2a3=3.
(1)求an;
(2)設bn=
1
Sn
,數(shù)列{bn}的前n項和記為Tn,求Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由題意聯(lián)立方程組解得首項及公差即得;
(2)利用裂項相消法求和即可得出結(jié)論.
解答: 解:(1)設數(shù)列{an}的公差為d,由題得
3a1+3d=a1+6d
(a1+7d)-2(a1+2d)=3
,(3分)
解得a1=3,d=2,(5分)
∴an=a1+(n-1)d=2n+1;                      (6分)
(2)由(1)得,Sn=na1+
n(n-1)
2
•d
=n(n+2),(8分)
∴bn=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),(10分)
∴Tn=b1+b2+…+bn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2

=
3
4
+
2n+3
2(n+1)(n+2)
.(12分)
點評:本題考查等差數(shù)列的性質(zhì)、數(shù)列的基本運算及利用裂項相消法求數(shù)列和的知識,考查學生的運算能力及方程思想的運用能力,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(4)=1,已知f(x)的導函數(shù)f(x)′的圖象如圖所示,若兩個正數(shù)a、b滿足f(2a+b)<1,則
a+2b+3
a+1
的取值范圍是( 。
A、(
7
5
,
5
3
B、(-∞,
1
3
)∪(5,+∞)
C、(
5
3
,11)
D、(-∞,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以直角坐標系的原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位已知直線的極坐標方程為θ=
π
4
(ρ∈R),它與曲線
x=2+
5
cosθ
y=1+
5
sinθ
(θ為參數(shù))相交于兩點A和B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)學趣味知識培訓活動中,甲、乙兩名學生的5次培訓成績?nèi)鐖D莖葉圖所示:
(Ⅰ)從甲、乙兩人中選擇1人參加數(shù)學趣味知識競賽,你會選哪位?請運用統(tǒng)計學的知識說明理由;
(Ⅱ)從乙的5次培訓成績中隨機選擇2個,試求選到121分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠ACB=60°,∠ABC=θ,AB=6
(1)求△ABC面積的最大值.
(2)若△ABC的周長為6
3
+6,求θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c且sinB+cosB=1-sin
B
2

(Ⅰ)求cosB的值;
(Ⅱ)若a+c=4,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若在平面直角坐標系內(nèi)過點P(1,
3
)且與原點的距離為d的直線有兩條,則d的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間中任意放置的棱長為2的正四面體ABCD,下列命題正確的是
 
.(寫出所有正確命題的編號)
①正四面體ABCD的主視圖面積可能是
2
;
②正四面體ABCD的主視圖面積可能是
3
;
③正四面體ABCD的主視圖面積可能是2;
④正四面體ABCD的主視圖面積可能是2
2
;
⑤正四面體ABCD的主視圖面積可能是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:
①不等式f(x)≤0的解集有且只有一個元素;
②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
設數(shù)列{an}的前n項和為Sn,且Sn=f(n).規(guī)定:在各項均不為零的數(shù)列{bn}中,所有滿足k•bk+1<0的正整數(shù)k的個數(shù)稱為這個數(shù)列{bn}的變號數(shù).若令bn=1-
a
an
(n∈N*)則:(。゜2=
 
;(ⅱ)數(shù)列{bn}的變號數(shù)為:
 

查看答案和解析>>

同步練習冊答案