函數(shù)y=x-2sinx在[0,π]上的遞增區(qū)間是
 
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先對函數(shù)y=x-2sinx求導(dǎo),令導(dǎo)數(shù)為0得f′(
π
3
)=0,在[0,
π
3
]與[
π
3
,π]上探討導(dǎo)函數(shù)的正負.
解答: 解:y′=1-2cosx,由y′=0解得x=
π
3
,
當(dāng)0≤x<
π
3
時,1-2cosx<0,
∴函數(shù)y=x-2sinx在[0,
π
3
]上遞減;
當(dāng)
π
3
<x≤π時,1-2cosx>0,
∴函數(shù)y=x-2sinx在[
π
3
,π]上遞增;
故答案為:[
π
3
,π].
點評:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,導(dǎo)數(shù)的正負與函數(shù)單調(diào)區(qū)間之間的關(guān)系是解題的關(guān)鍵,屬于基本題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個圓錐的三視圖,則其側(cè)面積是( 。
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是調(diào)查某地某公司1000名員工的月收入后制作的直方圖.根據(jù)直方圖估計:
(1)該公司月收入在1000元到1500元之間的人數(shù);
(2)該公司員工的月平均收入;
(3)該公司員工收入的眾數(shù);
(4)該公司員工月收入的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運算:
.
ab
cd
.
=ad-bc,若數(shù)列{an}滿足
.
a1
1
2
21
.
=1且
.
33
anan+1
.
=12(n∈N*),則a1=
 
,數(shù)列{an}的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用長度為20m的籬笆圍建一個一面靠墻的矩形雞舍,且雞舍內(nèi)用相同的籬笆隔成三間(如圖所示),如果挨著墻的邊長為x,雞舍面積為y
(1)請把y表示成x的函數(shù);
(2)當(dāng)x為何值時,函數(shù)取最大值,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題有
 
(寫出所有真命題的序號)
(1)在△ABC中,“A>B”是“sinA>sinB”的充要條件;
(2)點(
π
8
,0)為函數(shù)f(x)=tan(2x+
π
4
)的一個對稱中心;
(3)若|
a
|=1,|
b
|=2,向量
a
與向量
b
的夾角為120°,則
b
在向量
a
上的投影為1;
(4)?a>0,函數(shù)f(x)=ln2x+lnx-a有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,m∈R,當(dāng)直線l被圓C截得的弦長最短時的m的值是( 。
A、-
3
4
B、-
1
3
C、-
4
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是一問題的程序框圖,輸出的結(jié)果是1716,則設(shè)定循環(huán)控制條件(整數(shù))是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn是數(shù)列{an}的前n項和,a1+a6+a11=4π,則sin(S11)的值為(  )
A、
3
2
B、±
3
2
C、
1
2
D、-
3
2

查看答案和解析>>

同步練習(xí)冊答案