已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
(1)若,的單調(diào)增區(qū)間為 , ,的單調(diào)增區(qū)間為;(2).
解析試題分析:(1)對f(x)求導(dǎo)得,解可得單調(diào)增區(qū)間,解不等式過程中要對進(jìn)行討論;(2) 在R上單調(diào)遞增,則在R上恒成立 ,即恒成立,即,求出的最小值即可.
試題解析:
解:(1) 1分
若,則,此時的單調(diào)增區(qū)間為 2分
若,令,得
此時的單調(diào)增區(qū)間為 -6分
(2)在R上單調(diào)遞增,則在R上恒成立 -8分
即恒成立
即,因?yàn)楫?dāng)時,
所以 -12分 - 0 +
考點(diǎn):求導(dǎo),函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知..
(1)求函數(shù)在區(qū)間上的最小值;
(2)對一切實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍;
(3) 證明對一切, 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個不同的實(shí)根,求實(shí)數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué);虬嗉壟e行活動,通常需要張貼海報進(jìn)行宣傳,F(xiàn)讓你設(shè)計(jì)一張如圖所示的豎向張貼的海報,要求版心面積為128dm2 ,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計(jì)海報的尺寸才能
使四周空白面積最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x2+2x+kln x,其中k≠0.
(1)當(dāng)k>0時,判斷f(x)在(0,+∞)上的單調(diào)性;
(2)討論f(x)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知, ,,其中e是無理數(shù)且e="2.71828" ,.
(1)若,求的單調(diào)區(qū)間與極值;
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù)a,使的最小值是?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是二次函數(shù),方程有兩個相等的實(shí)數(shù)根,且。
(1)求的表達(dá)式;
(2)若直線把的圖象與兩坐標(biāo)軸圍成的圖形面積二等分,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com