17.給出如下四對事件:其中屬于互斥事件的有( 。
①某人射擊一次,“射中7環(huán)”與“射中8環(huán)”;
②甲、乙兩人各射擊一次,“甲射中7環(huán)”與“乙射中8環(huán)”;
③甲、乙兩人各射擊一次,“兩人均射中目標(biāo)”與“兩人均沒有射中目標(biāo)”;
④甲、乙兩人各射擊一次,“至少有一人射中目標(biāo)”與“至多有一人射中目標(biāo)”.
A.1對B.2對C.3對D.4對

分析 由已知條件,直接利用互斥事件的定義求解.

解答 解:在①中,某人射擊一次,“射中7環(huán)”與“射中8環(huán)”不能同時發(fā)生,是互斥事件;
在②中,甲、乙兩人各射擊一次,“甲射中7環(huán)”與“乙射中8環(huán)”能同時發(fā)生,不是互斥事件;
在③中,甲、乙兩人各射擊一次,“兩人均射中目標(biāo)”與“兩人均沒有射中目標(biāo)”不能同時發(fā)生,是互斥事件;
在④中,甲、乙兩人各射擊一次,“至少有一人射中目標(biāo)”與“至多有一人射中目標(biāo)”能同時發(fā)生,不是互斥事件.
故選:B.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意互斥事件的定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點F是拋物線C:y2=x的焦點,點S是拋物線C上在第一象限內(nèi)的一點,且|SF|=$\frac{5}{4}$.以S為圓心的動圓與x軸分別交于兩點A、B,延長SA,SB分別交拋物線C于M,N兩點.
(1)當(dāng)|AB|=2時,求圓S的方程;
(2)證明直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(1,$\frac{\sqrt{6}}{2}$),且離心率等于$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(2,0)作直線PA,PB交橢圓于A,B兩點,且滿足PA⊥PB,試判斷直線AB是否過定點,若過定點求出點坐標(biāo),若不過定點請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,A,B是⊙O上的兩點,P為⊙O外一點,連結(jié)PA,PB分別交⊙O于點C,D,且AB=AD,連結(jié)BC并延長至E,使∠PEB=∠PAB.
(Ⅰ) 求證:PE=PD;
(Ⅱ) 若AB=EP=1,且∠BAD=120°,求AP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在正三棱錐P-ABC中,M是PC的中點,且AM⊥PB,AB=2$\sqrt{2}$,則正三棱錐P-ABC的外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實數(shù)x,y滿足x2+y2=4,則4(x-$\frac{1}{2}$)2+(y-1)2+4xy的取值范圍是[1,22+4$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)求直線l與圓O公共點的一個極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx-x.
(I)判斷函數(shù)f(x)的單調(diào)性;
(II)函數(shù)$g(x)=f(x)+x+\frac{1}{2x}-m$有兩個零點x1,x2,且x1<x2.求證:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{3}$,且圖象上相鄰兩個最低點的距離為π.
(1)函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位,再將所得圖象上各點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[-π,π]上的值域;
(3)求(2)中g(shù)(x)在[$\frac{π}{3}$,$\frac{10π}{3}$]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案