10.數(shù)列${a_n}=2n-1({n∈{N^+}})$排出如圖所示的三角形數(shù)陣,設(shè)2013位于數(shù)陣中第s行,第t列,則s+t=62.

分析 由三角形數(shù)陣分析得到數(shù)陣的第n+1行第1列的數(shù)在數(shù)列{2n-1}中所在的項,驗證可知第45行第1列是數(shù)列{2n-1}的第991項,而2013是數(shù)列{2n-1}的第1007項,由此可推得2013位于數(shù)陣中的行與列,從而得到答案

解答 解:由三角形數(shù)陣可知,三角形數(shù)陣第n+1行第1列為數(shù)列{2n-1}的第$\frac{n(n+1)}{2}$+1項,
第45行第1列為第991項,2013為數(shù)列的第1007項,
∴s=45,t=17,
那么s+t=62.
故答案為:62.

點評 本題考查了等差數(shù)列的通項公式,解答的關(guān)鍵是明確所給三角形數(shù)陣的特點,求出數(shù)陣的第n+1行第1列的數(shù)在數(shù)列{2n-1}中所在的項,是中低檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題p:?b∈R,使直線y=-x+b是曲線y=x3-3ax的切線.若?p為真,則實數(shù)a的取值范圍是( 。
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$a>\frac{1}{3}$D.$a≥\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中正確的是( 。
A.任意兩個復(fù)數(shù)均不能比較大小
B.復(fù)數(shù)z為實數(shù)的充要條件是$z=\overline z$
C.復(fù)數(shù)z=3+2i在復(fù)平面上對應(yīng)的點在第二象限
D.復(fù)數(shù)i+3的共軛復(fù)數(shù)為i-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.實數(shù)a取什么值時,復(fù)數(shù)z=a2-1+(a+1)i.是
(I)實數(shù);
(Ⅱ)虛數(shù);
(Ⅲ)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f0(x)=cosx,${f_1}(x)=f_0^'(x)$,${f_2}(x)=f_1^'(x)$,…${f_{n+1}}(x)=f_n^'(x)$,n∈N,則f2011(x)等于( 。
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{1-sinx,x∈[0,π)}\\{{{log}_{2016}}\frac{x}{π},x∈[π,+∞)}\end{array}}\right.$若有三個不同的實數(shù)x1,x2,x3(x1<x2<x3),使得f(x1)=f(x2)=f(x3),則滿足x1+x2>4π-x3的事件的概率為$\frac{2013}{2015}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.命題p:$f(x)=\frac{2}{x-m}$在區(qū)間(-7,+∞)是減函數(shù),命題q:不等式${m^2}+5m-3≥\sqrt{{a^2}+8}$對任意的實數(shù)a∈[-1,1]恒成立.若(?p)∧q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某市在“國際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛生命,遠(yuǎn)離毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性.禁毒志愿者為了了解這則廣告的宣傳效果,隨機(jī)抽取了100名年齡階段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進(jìn)行問卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(1)求隨機(jī)抽取的市民中年齡段在[30,40)的人數(shù);
(2)從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)抽取5人,求[50,60)年齡段抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2cos(x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間是(  )
A.[2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z)D.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)

查看答案和解析>>

同步練習(xí)冊答案