分析 根據(jù)題意知$\frac{π}{2}$-θn是直線OAn的傾斜角,化$\frac{co{sθ}_{n}}{si{nθ}_{n}}$=$\frac{sin(\frac{π}{2}{-θ}_{n})}{cos(\frac{π}{2}{-θ}_{n})}$=tan($\frac{π}{2}$-θn)=$\frac{f(n)}{n}$,再求出$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$的解析式g(n),利用g(n)<t恒成立求出t的最小值.
解答 解:根據(jù)題意得,$\frac{π}{2}$-θn是直線OAn的傾斜角,
∴$\frac{co{sθ}_{n}}{si{nθ}_{n}}$=$\frac{sin(\frac{π}{2}{-θ}_{n})}{cos(\frac{π}{2}{-θ}_{n})}$
=tan($\frac{π}{2}$-θn)
=$\frac{f(n)}{n}$
=$\frac{2}{n(n+2)}$
=$\frac{1}{n}$-$\frac{1}{n+2}$,
∴$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$
=(1-$\frac{1}{3}$)+($\frac{1}{2}$-$\frac{1}{4}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{n}$-$\frac{1}{n+2}$)
=1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{3}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$;
要使$\frac{3}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$<t恒成立,
只須使實數(shù)t的最小值為$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.
點評 本題考查了平面向量的應(yīng)用問題,也考查了直線的傾斜角與斜率以及不等式恒成立問題,是綜合題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 1 | 2 | 3 | 4 | 5 |
y | 13.2 | m | 14.2 | 15.4 | 16.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4032 | B. | 2016 | C. | 4034 | D. | 2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com