【題目】已知數(shù)列的前項(xiàng)和為,且.

1)求數(shù)列的通項(xiàng)公式;

2)已知,記),是否存在這樣的常數(shù),使得數(shù)列是常數(shù)列,若存在,求出的值;若不存在,請說明理由;

3)若數(shù)列,對于任意的正整數(shù),均有成立,求證:數(shù)列是等差數(shù)列.

【答案】(1)(2)(3)見解析

【解析】

1)根據(jù)和項(xiàng)與通項(xiàng)關(guān)系得,再根據(jù)等比數(shù)列定義與通項(xiàng)公式求解(2)先化簡,再根據(jù)恒成立思想求的值(3)根據(jù)和項(xiàng)得,再作差得,最后根據(jù)等差數(shù)列定義證明.

1,所以,

時,,

兩式相減得,,

數(shù)列是以2為首項(xiàng),公比為的等比數(shù)列,所以.

2)若數(shù)列是常數(shù)列,

為常數(shù).

只有,解得,

此時.

3

,,其中,所以,

當(dāng)時,

②式兩邊同時乘以得,

①式減去③得,,所以,

因?yàn)?/span>,

所以數(shù)列是以為首項(xiàng),公差為的等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為2的正三角形,平面,,

(1)求證:平面平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,點(diǎn)Q在棱AB上.

(1)證明:平面.

(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程有實(shí)數(shù)根.

1)求實(shí)數(shù)m的取值范圍;

2)當(dāng)m=2時,方程的根為,求代數(shù)式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克,B原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗A、B原料都不超過12千克.通過合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是(
A.1800元
B.2400元
C.2800元
D.3100元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為R的半球O的底面圓O在平面α內(nèi),過點(diǎn)O作平面α的垂線交半球面于點(diǎn)A,過圓O的直徑CD作平面α成45°角的平面與半球面相交,所得交線上到平面α的距離最大的點(diǎn)為B,該交線上的一點(diǎn)P滿足∠BOP=60°,則A、P兩點(diǎn)間的球面距離為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個極值點(diǎn),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,若函數(shù),的“新駐點(diǎn)”分別為,則的大小關(guān)系為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與圓關(guān)于直線對稱.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)已知點(diǎn),若與直線垂直的直線與圓交于不同兩點(diǎn)、,且是鈍角,求直線軸上的截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案