8.已知一條光線自點M(2,1)射出,經(jīng)x軸反射后經(jīng)過點N(4,5),則反射光線所在的直線方程是(  )
A.3x+y+5=0B.2x-y-3=0C.3x-y-7=0D.3x-y-5=0

分析 利用點M(2,1)關(guān)于x軸的對稱點M′(2,-1)在反射光線所在的直線上,由兩點式寫出反射光線所在的直線方程,

解答 解:因為M(2,1)關(guān)于x軸的對稱點M′(2,-1)在反射光線所在的直線上,且經(jīng)x軸反射后經(jīng)過點N(4,5),
所以$\frac{y-5}{-1-5}$=$\frac{x-4}{2-4}$,
整理,得
3x-y-7=0.
故選:C.

點評 本題考查求一個點關(guān)于直線的對稱點坐標的方法,用兩點式求直線的方程,反射定律的應用.考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知無窮等比數(shù)列{an}的前n項和Sn=$\frac{1}{{3}^{n}}$+a(n∈N*),且a是常數(shù),則此無窮等比數(shù)列的各項和為-1.(用數(shù)值作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.經(jīng)過點P(2,-2),中心為原點、焦點在x軸上且離心率e=$\sqrt{3}$的雙曲線方程是( 。
A.$\frac{x^2}{4}-\frac{y^2}{2}=1$B.$\frac{x^2}{2}+\frac{y^2}{3}=1$C.$\frac{x^2}{2}-\frac{y^2}{4}=1$D.$\frac{y^2}{4}-\frac{x^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.定義在(0,+∞)上的增函數(shù)f(x)滿足條件:f(xy)=f(x)f(y)對所有正實數(shù)x,y均成立,且f(2)=4.
(1)求f(1)和f(8)的值;
(2)解關(guān)于x的不等式:16f($\frac{1}{x-3}$)≥f(2x+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在空間內(nèi),可以確定一個平面的條件是( 。
A.三個點
B.兩條直線
C.兩兩相交的三條直線,且有三個不同的交點
D.三條直線,其中一條直線與另外兩條直線分別相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設$a=\int_0^π{(cosx-sinx)dx}$,則二項式${({x^2}+\frac{a}{x})^6}$展開式中x3項的系數(shù)為(  )
A.-2B.20C.-160D.160

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知直線x-y+1=0經(jīng)過橢圓S:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>o)$的一個焦點和一個頂點.如圖,M,N分別是橢圓S的頂點,過坐標原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC,并延長交橢圓于點B,設直線PA的斜率為k.
(Ⅰ)若直線PA平分線段MN,求k的值;
(Ⅱ)對任意k>0,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和Sn,滿足Sn=2an-2n,bn=an+2.
(Ⅰ)求{an}的通項公式;
(Ⅱ)記cn=log2bn,數(shù)列$\{\frac{1}{{{c_n}{c_{n+1}}}}\}$的前n項和為Tn,證明${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.直線l經(jīng)過點P(1,2),且與兩坐標軸圍成的面積為S,如果符合條件的直線l能作且只能作三條,則S=( 。
A.3B.4C.5D.8

查看答案和解析>>

同步練習冊答案