分析 設(shè)橢圓上兩點(diǎn)A(x1,y1)、B(x2,y2)關(guān)于直線y=4x+m對(duì)稱(chēng),AB中點(diǎn)為M(x0,y0),利用平方差法與直線y=4x+m可求得x0=-m,y0=-3m,點(diǎn)M(x0,y0)在橢圓內(nèi)部,將其坐標(biāo)代入橢圓方程即可求得m的取值范圍.
解答 解:∵$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,故3x2+4y2-12=0,
設(shè)橢圓上兩點(diǎn)A(x1,y1)、B(x2,y2)關(guān)于直線y=4x+m對(duì)稱(chēng),AB中點(diǎn)為M(x0,y0),
則3x12+4y12-12=0,①
3x22+4y22-12=0,②
①-②得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
即 3•2x0•(x1-x2)+4•2y0•(y1-y2)=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3}{4}$•$\frac{{x}_{0}}{{y}_{0}}$=-$\frac{1}{4}$.
∴y0=3x0,代入直線方程y=4x+m得x0=-m,y0=-3m;
因?yàn)椋▁0,y0)在橢圓內(nèi)部,
∴3m2+4•(-3m)2<12,即3m2+36m2<12,
解得-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$.
故答案為:-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$
點(diǎn)評(píng) 本題考查直線與圓錐曲線的綜合問(wèn)題,著重考查平方差法的應(yīng)用,突出化歸思想的考查,屬于難題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 經(jīng)過(guò)一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面 | |
B. | 經(jīng)過(guò)兩條相交直線,有且只有一個(gè)平面 | |
C. | 平面α與平面β相交,它們只有有限個(gè)公共點(diǎn) | |
D. | 如果兩個(gè)平面有三個(gè)不共線的公共點(diǎn),那么這兩個(gè)平面重合 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 3 | -2 | 4 | $\sqrt{3}$ |
y | $-2\sqrt{3}$ | 0 | -4 | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
B. | “若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0” | |
C. | 在△ABC中,A>B是cosA<cosB的必要不充分條件 | |
D. | 若p∧(¬q)為假,p∨(¬q)為真,則p,q同真或同假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2}{3}$π | D. | $\frac{5}{6}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,$\frac{1}{4}$) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{4}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com