如圖,已知一個正三棱錐P-ABC的底面棱長AB=3,高PO=
6
,求這個正三棱錐的表面積.
考點:棱柱、棱錐、棱臺的側(cè)面積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:連接AO,確定正三棱錐P-ABC的四個面是全等的等邊三角形,即可求這個正三棱錐的表面積.
解答: 解:連接AO,在等邊三角形ABC中,由AB=3,可得AO=
2
3
32-(
3
2
)2
=
3
,
在Rt△AOP中,AP=
3+6
=3,
∴正三棱錐P-ABC的四個面是全等的等邊三角形,
∴S表面積=4×
3
4
×32
=9
3
點評:本題主要考查基本運算,考查三棱錐的全面積,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,且Sn+an=1,數(shù)列{bn}滿足b1=4,bn+1=3bn-2;
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)數(shù)列{cn}滿足cn=anlog3(b2n-1-1),其前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,已知bcosC+ccosB=b,則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x-1

(1)判斷并證明函數(shù)f(x)在區(qū)間[2,6]上的單調(diào)性;
(2)求函數(shù)f(x)在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2x,x≤1
2ax-5,x>1
,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實數(shù)a的取值范圍是( 。
A、a<0B、a≤0
C、a<3D、0<a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga(ax-1)(a>0,且a≠1)
(1)求f(x)的定義域;
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)>1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(2014x+
π
6
)+cos(2014x-
π
3
)的最大值為A,若存在實數(shù)x1,x2,使得對任意實數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1-x2|的最小值為( 。
A、
π
1007
B、
π
2014
C、
1007
D、
2
π
1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某三棱錐的三視圖如圖所示,則該三棱錐的體積是( 。
A、1
B、
2
3
C、
1
6
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,則△ABC的形狀是( 。
A、直角三角形
B、等腰非等邊三角形
C、等邊三角形
D、等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案