A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}+1$ | D. | $2\sqrt{3}$ |
分析 由題意可得A在雙曲線的右支上,由雙曲線的定義可得|AF1|-|AF2|=2a,設(shè)Rt△AF1F2內(nèi)切圓半徑為r,運用等積法和勾股定理,可得r=c-a,結(jié)合條件和離心率公式,計算即可得到所求值.
解答 解:由點A在雙曲線上,且AF2⊥x軸,
可得A在雙曲線的右支上,
由雙曲線的定義可得|AF1|-|AF2|=2a,
設(shè)Rt△AF1F2內(nèi)切圓半徑為r,
運用面積相等可得S${\;}_{△A{F}_{1}{F}_{2}}$=$\frac{1}{2}$|AF2|•|F1F2|
=$\frac{1}{2}$r(|AF1|+|AF2|+|F1F2|),
由勾股定理可得|AF2|2+|F1F2|2=|AF1|2,
解得r=$\frac{{|{A{F_2}}|+|{{F_1}{F_2}}|-|{A{F_1}}|}}{2}=\frac{2c-2a}{2}=c-a=({\sqrt{3}-1})a$,
$⇒c=\sqrt{3}a$,
則離心率e=$\frac{c}{a}$=$\sqrt{3}$,
故選A.
點評 本題考查雙曲線的離心率的求法,注意運用雙曲線的定義和三角形的等積法,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0} | B. | {1,2,3} | C. | {0,4} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 53 | B. | 54 | C. | 158 | D. | 263 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±x | B. | $y=±\frac{2}{3}x$ | C. | $y=±\frac{1}{3}x$ | D. | $y=±\frac{1}{2}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,2) | B. | (-2,2) | C. | (-2,3] | D. | [-1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 數(shù)列{xi}可能是等比數(shù)列 | B. | 數(shù)列{yi}是常數(shù)列 | ||
C. | 數(shù)列{xi}可能是等差數(shù)列 | D. | 數(shù)列{xi+yi }可能是等比數(shù)列 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com