A. | y=±x | B. | $y=±\frac{2}{3}x$ | C. | $y=±\frac{1}{3}x$ | D. | $y=±\frac{1}{2}x$ |
分析 根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程分析可得其焦距2c=2$\sqrt{{(m}^{2}+8)+(6-2m)}$=2$\sqrt{{m}^{2}-2m+14}$,由二次函數(shù)的性質(zhì)分析可得當(dāng)m=1時(shí),雙曲線的焦距最小,將m的值代入雙曲線方程可得此時(shí)雙曲線的方程,由雙曲線的漸近線方程計(jì)算可得答案.
解答 解:根據(jù)題意,雙曲線的方程為$\frac{x^2}{{{m^2}+8}}-\frac{y^2}{6-2m}=1$,
其焦距2c=2$\sqrt{{(m}^{2}+8)+(6-2m)}$=2$\sqrt{{m}^{2}-2m+14}$,
分析可得:當(dāng)m=1時(shí),雙曲線的焦距最小,
此時(shí)雙曲線的方程為:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1,
其漸近線的方程為y=±$\frac{2}{3}$x,
故選:B.
點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),涉及二次函數(shù)的性質(zhì),關(guān)鍵是掌握雙曲線的焦距的公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnx | 0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
A. | $\frac{3}{5}$(e-1) | B. | $\frac{2}{5}$(e-1) | C. | $\frac{3}{5}$(e+1) | D. | $\frac{2}{5}$(e+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{2}}{4}$ | C. | $\sqrt{2}$ | D. | $\frac{5\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}+1$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α<θ<β | B. | β<θ<α | C. | β<α<θ | D. | α<β<θ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{14}{3}$ | C. | 6 | D. | 14 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com