16.當(dāng)雙曲線$\frac{x^2}{{{m^2}+8}}-\frac{y^2}{6-2m}=1$的焦距取得最小值時(shí),其漸近線的方程為(  )
A.y=±xB.$y=±\frac{2}{3}x$C.$y=±\frac{1}{3}x$D.$y=±\frac{1}{2}x$

分析 根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程分析可得其焦距2c=2$\sqrt{{(m}^{2}+8)+(6-2m)}$=2$\sqrt{{m}^{2}-2m+14}$,由二次函數(shù)的性質(zhì)分析可得當(dāng)m=1時(shí),雙曲線的焦距最小,將m的值代入雙曲線方程可得此時(shí)雙曲線的方程,由雙曲線的漸近線方程計(jì)算可得答案.

解答 解:根據(jù)題意,雙曲線的方程為$\frac{x^2}{{{m^2}+8}}-\frac{y^2}{6-2m}=1$,
其焦距2c=2$\sqrt{{(m}^{2}+8)+(6-2m)}$=2$\sqrt{{m}^{2}-2m+14}$,
分析可得:當(dāng)m=1時(shí),雙曲線的焦距最小,
此時(shí)雙曲線的方程為:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1,
其漸近線的方程為y=±$\frac{2}{3}$x,
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),涉及二次函數(shù)的性質(zhì),關(guān)鍵是掌握雙曲線的焦距的公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線y=lnx與直線x=c,y=0所圍成的曲邊三角形的面積時(shí),用計(jì)算機(jī)分別產(chǎn)生了10個(gè)在區(qū)間[1,e]上的均勻隨機(jī)數(shù)xi和10個(gè)區(qū)間[0,1]上的均勻隨機(jī)數(shù)yi(i∈N*,1≤i≤10),其數(shù)據(jù)如下表的前兩行.
x2.50  1.01 1.90 1.222.52 2.17 1.89 1.96 1.36 2.22 
y0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10 
lnx 0.90 0.010.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80 
由此可得這個(gè)曲邊三角形面積的一個(gè)近似值是( 。
A.$\frac{3}{5}$(e-1)B.$\frac{2}{5}$(e-1)C.$\frac{3}{5}$(e+1)D.$\frac{2}{5}$(e+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)f(x)=sinπx的圖象向左平移$\frac{1}{2}$個(gè)單位后得到函數(shù)g(x)的圖象,若f(x)和g(x)在區(qū)間[-1,2]上的圖象交于A,B,C三點(diǎn),則△ABC的面積是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\sqrt{2}$D.$\frac{5\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$\frac{m+i}{1-i}$為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)m等于( 。
A.-1B.$-\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在雙曲線上,且AF2⊥x軸,若△AF1F2的內(nèi)切圓半價(jià)為$({\sqrt{3}-1})a$,則其離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{3}+1$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線的方程為x-2y=0,則該雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知矩形ABCD,AD=$\sqrt{2}$AB,沿直線BD將△ABD折成△A′BD,使點(diǎn)A′在平面BCD上的射影在△BCD內(nèi)(不含邊界).設(shè)二面角A′-BD-C的大小為θ,直線A′D,A′C與平面BCD所成的角分別為α,β,則(  )
A.α<θ<βB.β<θ<αC.β<α<θD.α<β<θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若不等式組$\left\{\begin{array}{l}x+2y-4≤0\\ ax+3y-4≥0\\ y≥0\end{array}\right.$表示的平面區(qū)域是等腰三角形區(qū)域,則實(shí)數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在等差數(shù)列{an}中,若a2=2,a1+a5=16,則公差d等于(  )
A.4B.$\frac{14}{3}$C.6D.14

查看答案和解析>>

同步練習(xí)冊答案