分析 根據(jù)求導公式(uv)′=u′v+uv′及x′=1和(tanx)′=sec2x,求出函數(shù)的導數(shù),可得切線的斜率,進而求出切線的方程.
解答 解:y′=(2xtanx)′=2tanx+2xsec2x,
∴x=$\frac{π}{4}$,y′=2+π
∵y=$\frac{π}{2}$,
∴曲線y=2xtanx在點x=$\frac{π}{4}$處的切線方程是y-$\frac{π}{2}$=(2+π)(x-$\frac{π}{4}$),即(2+π)x-y-$\frac{{π}^{2}}{4}$=0.
故答案為(2+π)x-y-$\frac{{π}^{2}}{4}$=0.
點評 本題主要考查導數(shù)的幾何意義,考查了導數(shù)的乘法法則,以及三角函數(shù)的導數(shù),牢記求導公式是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c>a>b | B. | b>a>c | C. | b>a>c | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 實軸長相等 | B. | 離心率相等 | C. | 范圍相同 | D. | 漸近線相同 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{28}{5}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com