設(shè)平面向量
,
,
均為非零向量,則“
•(
-
)=0”是“
=
”的( 。
A、充分而不必要條件 |
B、必要而不充分條件 |
C、充分必要條件 |
D、既不充分也不必要條件 |
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)向量的數(shù)量積關(guān)系,以及充分條件和必要條件的定義進行判斷即可得到結(jié)論.
解答:
解:若
=
,則
•(
-
)=0成立,必要性成立,
若
•(
-
)=0得
•
=
•
,則
=
不一定成立,充分性不成立.
故“
•(
-
)=0”是“
=
”的必要而不充分條件,
故選:B.
點評:本題主要考查充分條件和必要條件的判斷,利用向量的數(shù)量積是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知三個不全相等的實數(shù)m,p,q成等比數(shù)列,則可能成等差數(shù)列的是( 。
A、m,p,q |
B、m2,p2,q2 |
C、m3,p3,q3 |
D、,, |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,若sinA=
,則cos2(B+C)的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)i是虛數(shù)單位,若復(fù)數(shù)滿足zi=3-2i,則z=( )
A、z=3+2i |
B、z=2-3i |
C、z=-2-3i |
D、z=-2+3i |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若不等式ax2+ax-1<0對一切x∈R恒成立,則實數(shù)a的取值范圍是( 。
A、(-∞,0) |
B、(-∞,0] |
C、(-4,0) |
D、(-4,0] |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知(1+i)(1-mi)=2i(i是虛數(shù)單位),則實數(shù)m的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)y=a-bcos(2x+
)(b>0)的最大值為
,最小值為-
.
(1)求a,b的值;
(2)已知函數(shù)g(x)=-4asin(bx
-),當g(x)≥-1時求自變量x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知A={x|-1≤x<6},B={x|m-1≤x≤3m+2},若B⊆A,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知一扇形的中心角是α,所在圓的半徑是R.
(1)若α=60°,R=10cm,求扇形的弧長及該弧所在的弓形面積;
(2)若扇形的周長是12cm,當α為多少弧度時,該扇形有最大面積?并且最大面積是多少?
查看答案和解析>>