4.不等式|x+2|+|x-3|≥m2-4m對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.(1,5)B.[2,3)C.[-1,5]D.[-1,3]

分析 由條件利用絕對(duì)值的意義求得|x+2|+|x-3|的最小值為5,從而求得實(shí)數(shù)m的取值范圍.

解答 解:|x+2|+|x-3|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到-2、3對(duì)應(yīng)點(diǎn)的距離之和,故|x+2|+|x-3|的最小值為5.
再根據(jù)|x+2|+|x-3|≥m2-4m對(duì)任意實(shí)數(shù)x恒成立,可得5≥m2-4m,
求得-1≤m≤5,
故選:C.

點(diǎn)評(píng) 本題主要考查絕對(duì)值的意義,絕對(duì)值不等式的解法,函數(shù)的恒成立問題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=1-3x(x∈[-1,2])的值域是[-8,$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)M={1,2,3,4,5,6,7,8,9,10},由M到M上的一一映射中,有7個(gè)數(shù)字和自身對(duì)應(yīng)的映射個(gè)數(shù)是( 。
A.120B.240C.107D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算($\frac{1}{2}$)-3+(-3)2-($\frac{1}{27}$)-${\;}^{\frac{1}{3}}$-(-3$\frac{1}{5}$)0=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.角α的終邊上一點(diǎn)的坐標(biāo)為(1,-1),則滿足條件的最小正角α是$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-(\frac{1}{3})^{x},x≤0}\\{\frac{1}{2}{x}^{2}-x+1,x>0}\end{array}\right.$.
(1)請(qǐng)?jiān)谥苯亲鴺?biāo)系中畫出函數(shù)f(x)的圖象,并寫出該函數(shù)的單調(diào)區(qū)間;
(2)若方程f(x)-m=0恰有3個(gè)不同根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知tanx=2,
(1)求2sin2x+cos2x的值;
(2)若π<x<$\frac{3π}{2}$,求cosx-sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=x2+4x+3,求f(x)在區(qū)間[-4,7]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.?dāng)?shù)列{an}中,a1=1,?n≥2,n∈N*,a1•a2•a3•…an=n2+2n,則a3=$\frac{15}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案