5.現(xiàn)有三個函數(shù):①y=$\frac{{e}^{x}+{e}^{-x}}{2}$,②y=$\frac{{e}^{x}-{e}^{-x}}{2}$,③y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$的圖象(部分)如下:

則按照從左到右圖象對應(yīng)的函數(shù)序號安排正確的一組是( 。
A.①②③B.③①②C.③②①D.②①③

分析 根據(jù)函數(shù)的奇偶性判斷函數(shù)①,根據(jù)函數(shù)值得變化趨勢判斷函數(shù)②③,問題得以解決.

解答 解:對于①,f(-x)=$\frac{{e}^{x}+{e}^{-x}}{2}$=f(x),故①為偶函數(shù),所以對應(yīng)的圖象為中間的圖象,
對于②y=$\frac{{e}^{x}-{e}^{-x}}{2}$,當(dāng)x→+∞時(shí),ex→+∞,e-x→0,所以當(dāng)x→+∞時(shí),y→+∞,所以對應(yīng)的圖象為最左邊的圖象,
對于③y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$=1-$\frac{2}{{e}^{2x}+1}$,當(dāng)x→+∞時(shí),e2x→+∞,所以當(dāng)x→+∞時(shí),y→+1,所以對應(yīng)的圖象為最右邊的圖象,
所以則按照從左到右圖象對應(yīng)的函數(shù)序號安排正確的一組是②①③,
故選:D

點(diǎn)評 本題考查了函數(shù)圖象的識別,常根據(jù)函數(shù)的奇偶性以及函數(shù)值得變化趨勢,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)全集U=R,集合P={x|x2-x-6≥0},Q={x|2x≥1},則(CRP)∩Q=( 。
A.{x|-2<x<3}B.{x|x≥0}C.{x|0≤x<3}D.{x|0≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a,b∈R,關(guān)于x,y的不等式|x|+|y|<1和ax+4by≥8無公共解,則ab的取值范圍是( 。
A.[-16,16]B.[-8,8]C.[-4,4]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知不等式|x-2|≤1的解集與不等式2x2-ax+b<0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)=a$\sqrt{x-3}$+b$\sqrt{15-4x}$的最大值及取得最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線y2+4x=0上的點(diǎn)P到直線x=2的距離等于4,則P到焦點(diǎn)F的距離|PF|=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了若干名學(xué)生的體檢表,并得到如圖直方圖:
(Ⅰ)若直方圖中前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,試估計(jì)全年級視力在5.0以下的人數(shù);
(Ⅱ)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如下數(shù)據(jù):
      年級名次
    是否近視
1~50951~1000
近視4132
不近視918
根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在極坐標(biāo)系中,已知點(diǎn)$A(4,1),B(3,1+\frac{π}{2})$,則線段AB的長度是(  )
A.1B.$\sqrt{1+\frac{π^2}{4}}$C.7D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=sinx(sinx+$\sqrt{3}cosx$).
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓O的圓心為原點(diǎn)O,且與直線x+y+4$\sqrt{2}$=0相切.
(1)求圓O的方程;
(2)斜率為1的直線l與圓O相交于A,B兩點(diǎn),求直線l的方程,使△OAB的面積最大.

查看答案和解析>>

同步練習(xí)冊答案