17.在極坐標(biāo)系中,已知點(diǎn)$A(4,1),B(3,1+\frac{π}{2})$,則線段AB的長(zhǎng)度是( 。
A.1B.$\sqrt{1+\frac{π^2}{4}}$C.7D.5

分析 由極坐標(biāo),利用勾股定理即可得出.

解答 解:設(shè)極點(diǎn)為O.
∵點(diǎn)$A(4,1),B(3,1+\frac{π}{2})$,
∴OA⊥OB,
∴|AB|=$\sqrt{O{A}^{2}+O{B}^{2}}$=5.
故選:D.

點(diǎn)評(píng) 本題考查了極坐標(biāo)、勾股定理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p,q分別是M到直線l1和l2的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.
給出下列四個(gè)命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè).
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè).
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).
④若p=q,則點(diǎn)M的軌跡是一條過(guò)O點(diǎn)的直線.
其中所有正確命題的序號(hào)為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若曲線y=f(x)在點(diǎn)A(x1,y1)處切線的斜率為kA,曲線y=g(x)在點(diǎn)B(x2,y2)處切線的斜率為kB(x1≠x2),將$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$的值稱(chēng)為這兩曲線在A,B間的“異線曲度”,記作φ(A,B).現(xiàn)給出以下四個(gè)命題:
①已知曲線f(x)=x3,g(x)=x2-1,且A(1,1),B(2,3),則φ(A,B)>$\frac{\sqrt{2}}{2}$;
②存在兩個(gè)函數(shù)y=f(x),y=g(x),其圖象上任意兩點(diǎn)間的“異線曲度”為常數(shù);
③已知拋物線f(x)=x2+1,g(x)=x2,若x1>x2>0,則φ(A,B)<$\frac{2\sqrt{5}}{5}$;
④對(duì)于曲線f(x)=ex,g(x)=e-x,當(dāng)x1-x2=1時(shí),若存在實(shí)數(shù)t,使得t•φ(A,B)>1恒成立,則t的取值范圍是[1,+∞).
其中正確命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.現(xiàn)有三個(gè)函數(shù):①y=$\frac{{e}^{x}+{e}^{-x}}{2}$,②y=$\frac{{e}^{x}-{e}^{-x}}{2}$,③y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$的圖象(部分)如下:

則按照從左到右圖象對(duì)應(yīng)的函數(shù)序號(hào)安排正確的一組是( 。
A.①②③B.③①②C.③②①D.②①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≥1}\\{\frac{1}{x},0<x<1}\end{array}\right.$,g(x)=af(x)-|x-2|,a∈R.
(Ⅰ)當(dāng)a=0時(shí),若g(x)≤|x-1|+b對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)y=g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)(3x-2)6=a0+a1(2x-1)+a2(2x-1)2+…+a6(2x-1)6,則$\frac{{{a_1}+{a_3}+{a_5}}}{{{a_0}+{a_2}+{a_4}+{a_6}}}$=-$\frac{63}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖是一個(gè)幾何體的三視圖,則該幾何體體積為(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=lnx-ax-ln2.
(1)討論y=f(x)的單調(diào)性;
(2)當(dāng)a=1,時(shí),對(duì)任意x∈(0,+∞),不等式f(x)≤bx-1恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.給出函數(shù)f(x)的數(shù)值對(duì)應(yīng)表:
x1-2324-4
y345410
則與f(x)=4對(duì)應(yīng)的自變量的值是(  )
A.-2B.1C.2D.±2

查看答案和解析>>

同步練習(xí)冊(cè)答案