分析 (1)由an+1=$2(1+\frac{1}{n}){a_n}$,n∈N*,可得$\frac{{a}_{n+1}}{n+1}=2×\frac{{a}_{n}}{n}$,即可證明數(shù)列$\{\frac{{a}_{n}}{n}\}$是等比數(shù)列.
(2)由(1)可得:$\frac{{a}_{n}}{n}$=2n,利用“錯(cuò)位相減法”、等比數(shù)列的求和公式.
解答 (1)證明:∵an+1=$2(1+\frac{1}{n}){a_n}$,n∈N*,∴$\frac{{a}_{n+1}}{n+1}=2×\frac{{a}_{n}}{n}$,
∴數(shù)列$\{\frac{{a}_{n}}{n}\}$是等比數(shù)列,首項(xiàng)為2,公比為2.
(2)解:由(1)可得:$\frac{{a}_{n}}{n}$=2n,∴an=n•2n.
∴數(shù)列{an}的前n項(xiàng)之和Sn=2+2×22+3×23+…+n•2n,
2Sn=22+2×23+…+(n-1)•2n+n•2n+1,
∴-Sn=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1,
∴Sn=(n-1)•2n+1+2.
點(diǎn)評(píng) 本題考查了等比數(shù)列的定義通項(xiàng)公式與求和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com