已知集合A={x∈R|x≤5},B={x∈R|x>1}那么A∩B等于( 。
A、{1,2,3,4,5}
B、{2,3,4,5}
C、{2,3,4}
D、{x∈R|1<x≤5}
考點(diǎn):交集及其運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用交集的定義,求出兩個(gè)集合的交集.
解答: 解:∵A={x∈R|x≤5},B={x∈R|x>1},
∴A∩B={x∈R|1<x≤5}
故選D
點(diǎn)評(píng):在求集合的運(yùn)算時(shí)常借助的工具是數(shù)軸;注意集合的運(yùn)算結(jié)果一定也是集合形式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知點(diǎn)A(1,1),B(2,2),點(diǎn)P在直線y=
1
2
x上,求|PA|2+|PB|2取得最小值時(shí)P點(diǎn)的坐標(biāo).
(2)曲線y=2x-x3在橫坐標(biāo)為-l的點(diǎn)處的切線為l,求點(diǎn)P(3,2)到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,A:B:C=3:1:2,則a:b:c=( 。
A、1:2:3
B、3:1:2
C、1:
3
:2
D、2:1:
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(x+1)(x+a)為偶函數(shù),則a=(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x(3x+m•3-x)(x∈R)是偶函數(shù),則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+(2a+1)x+a2+3a
(I)若f(x)在[0,2]上的最大值為0,求實(shí)數(shù)a的值;
(II)若f(x)在區(qū)間[α,β]上單調(diào),且{y|y=f(x),α≤x≤β}=[α,β],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖的程序框圖中,該程序框圖輸出的結(jié)果是28,則序號(hào)①應(yīng)填入的條件是(  ) 
A、K≤4?B、K≥4?
C、K<4?D、K>4?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A∪{-1,1}={0,-1,1},則滿足條件的集合A共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)與直線l:y=-
3
3
x+b交于不同的兩點(diǎn)P,Q,原點(diǎn)到該直線的距離為
3
2
,且橢圓的離心率為
6
3

(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在實(shí)數(shù)k,使直線y=kx+2交橢圓于P、Q兩點(diǎn),以PQ為直徑的圓過點(diǎn)D(1,0)?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案