【題目】在四棱錐P-ABCD,底面ABCD是邊長為的正方形,平面PAC底面ABCDPA=PC=

1)求證:PB=PD;

2)若點(diǎn)M,N分別是棱PA,PC的中點(diǎn),平面DMN與棱PB的交點(diǎn)Q,則在線段BC上是否存在一點(diǎn)H,使得DQPH,若存在,BH的長,若不存在,請說明理由.

【答案】(1)見證明;(2)見解析

【解析】

(1) ACBD=O,連結(jié)PO,易證POAC,結(jié)合平面PAC底面ABCD,可得到PO底面ABCD,從而得到POBD,則有PB=PD;(2) O為坐標(biāo)原點(diǎn),射線OBOC,OP的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系,求出平面的法向量n,設(shè),可得到點(diǎn)的坐標(biāo),即可表示出,由=0,可求出,設(shè),可表示出點(diǎn),由,可求出,從而可求出

(1)證明:記ACBD=O,連結(jié)PO,

底面ABCD為正方形,OA=OC=OB=OD=2.

PA=PC,POAC

平面PAC底面ABCD=AC,PO平面PAC

PO底面ABCD.

BD底面ABCD,POBD.

PB=PD.

(2)O為坐標(biāo)原點(diǎn),射線OB,OCOP的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系如圖所示,由(1)可知OP=2.

可得P(0,0,2),A(0,-2,0), B(2,0,0), C(0,2,0), D(-2,0,0),

可得,M(0,-1,1), N(0,1, 1).,.

設(shè)平面的法向量n=,

,

,可得n=.

,可得

,=0,可得,,解得.

可得,.

,可得,

,若DQPH,則,

,解得.故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表, 的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于的命題:

-1

0

4

5

1

2

2

1

①函數(shù)的極大值點(diǎn)為0,4;

②函數(shù)在[0,2]上是減函數(shù);

③如果當(dāng)時(shí), 的最大值是2,那么t的最大值為4;

④當(dāng)1<a<2時(shí),函數(shù)有4個(gè)零點(diǎn).

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】101日,某品牌的兩款最新手機(jī)(記為型號(hào),型號(hào))同時(shí)投放市場,手機(jī)廠商為了解這兩款手機(jī)的銷售情況,在101日當(dāng)天,隨機(jī)調(diào)查了5個(gè)手機(jī)店中這兩款手機(jī)的銷量(單位:部),得到下表:

手機(jī)店

型號(hào)手機(jī)銷量

6

6

13

8

11

型號(hào)手機(jī)銷量

12

9

13

6

4

(Ⅰ)若在101日當(dāng)天,從,這兩個(gè)手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為型號(hào)手機(jī)的概率;

(Ⅱ)現(xiàn)從這5個(gè)手機(jī)店中任選3個(gè)舉行促銷活動(dòng),用表示其中型號(hào)手機(jī)銷量超過型號(hào)手機(jī)銷量的手機(jī)店的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)經(jīng)測算,型號(hào)手機(jī)的銷售成本(百元)與銷量(部)滿足關(guān)系.若表中型號(hào)手機(jī)銷量的方差,試給出表中5個(gè)手機(jī)店的型號(hào)手機(jī)銷售成本的方差的值.(用表示,結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若的極值,求的值,并求的單調(diào)區(qū)間。

(2)若時(shí),,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)?/span>R的函數(shù)滿足,且在0 恒成立,則的解集為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左右焦點(diǎn)分別為,.橢圓C上任一點(diǎn)P都滿足,并且該橢圓過點(diǎn).

求橢圓C的方程;

Ⅱ)過點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),過點(diǎn)Ax軸的垂線,交該橢圓于點(diǎn)M,求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.

1)焦點(diǎn)在x軸上,實(shí)軸長10,虛軸長8.

2)焦點(diǎn)在y軸上,焦距是10,虛軸長8.

3)離心率,經(jīng)過點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對(duì)應(yīng)的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對(duì)應(yīng)的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關(guān)系式;

(2)如果將統(tǒng)計(jì)的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤不少于1950元的人數(shù)之和,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種

A. 19B. 7C. 26D. 12

查看答案和解析>>

同步練習(xí)冊答案