已知函數(shù)f(x)=(
1
6
x-lnx,若x0是函數(shù)f(x)的零點,且0<x1<x0,則f(x1)的值( 。
A、恒為正數(shù)B、等于0
C、恒為負(fù)數(shù)D、不能確定正負(fù)
考點:函數(shù)的零點
專題:數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的單調(diào)性判斷.
解答: 解:∵函數(shù)f(x)=(
1
6
x-lnx,在(0,+∞)單調(diào)遞減,x0是函數(shù)f(x)的零點
∴f(x0)=0,
∴在(0,x0)上,有f(x)>0
∵0<x1<x0,
∴f(x1)>0,
故選:A
點評:本題考察了函數(shù)的單調(diào)性,在解決零點問題中的應(yīng)用.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1+a2+a3+…+an=n-an(n∈N*).
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an-1}是等比數(shù)列;
(3)設(shè)bn=(2-n)(an-1)(n∈N*),如果對任意n∈N*,都有bn
t
5
,求正整數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
x-1
x+1
(其中a>0且a≠1),g(x)是f(x+2)的反函數(shù).
(1)已知關(guān)于x的方程loga
m
(x+1)(7-x)
=f(x)在x∈[2,6]上有實數(shù)解,求實數(shù)m的取值范圍;
(2)當(dāng)0<a<1時,討論函數(shù)f(x)的奇偶性和單調(diào)性;
(3)當(dāng)0<a<1,x>0時,關(guān)于x的方程|g(x)|2+m|g(x)|+2m+3=0有三個不同的實數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2x2+mx+1在區(qū)間[-1,4]上是單調(diào)函數(shù),則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知a+a-1=11,求a 
1
2
-a -
1
2
的值;
(Ⅱ)解關(guān)于x的方程(log2x)2-2log2x-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列關(guān)于點P,直線l、m與平面α、β的命題中,正確的是( 。
A、若m⊥α,l⊥m,則l∥α
B、若l、m是異面直線,m?α,m∥β,l?β,l∥α,則α∥β
C、若α⊥β,α∩β=m,P∈α,P∈l,且l⊥m,則l⊥β
D、若α⊥β且l⊥β,m⊥l,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m+log2x2的定義域是[-2,-1],且f(x)≤4恒成立,則實數(shù)m的取值范圍是( 。
A、(-∞,4]
B、[2,+∞)
C、(-∞,2]
D、[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=3,a2=6,an+2=2an+1-an則a2011=( 。
A、6033B、6030
C、6133D、6130

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
AB
AC
=2
3
,∠BAC=30°.
(1)求△ABC的面積;
(2)設(shè)M是△AB內(nèi)一點,S△MBC=
1
2
,設(shè)f(M)=(m,n),其中m,n分別是△MCA,△MAB的面積,求
1
m
+
4
n
的最小值.

查看答案和解析>>

同步練習(xí)冊答案