13.觀察下列事實(shí):|x|+|y|=1的不同整數(shù)解(x,y)有4個(gè),|x|+|y|=2的不同整數(shù)解(x,y)有8個(gè),|x|+|y|=3的不同整數(shù)解(x,y)有12個(gè),…,則|x|+|y|=15的不同整數(shù)解(x,y)的個(gè)數(shù)為( 。
A.64B.60C.56D.52

分析 觀察可得不同整數(shù)解的個(gè)數(shù)可以構(gòu)成一個(gè)首項(xiàng)為4,公差為4的等差數(shù)列,則所求為第15項(xiàng),可計(jì)算得結(jié)果.

解答 解:觀察可得不同整數(shù)解的個(gè)數(shù)4,8,12,…
可以構(gòu)成一個(gè)首項(xiàng)為4,公差為4的等差數(shù)列,
通項(xiàng)公式為an=4n,則所求為第15項(xiàng),所以a15=60.
故選B.

點(diǎn)評(píng) 本題考查歸納推理,尋找關(guān)系式內(nèi)部,關(guān)系式與關(guān)系式之間數(shù)字的變化特征,從特殊到一般,進(jìn)行歸納推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于M,N兩點(diǎn),點(diǎn)A(1,0),求$\frac{1}{|MA|}$+$\frac{1}{|NA|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知an=(${\frac{1}{3}}$)n,把數(shù)列{an}的各項(xiàng)排成如下的三角形:

記A(s,t)表示第s行的第t個(gè)數(shù),則A(11,12)=${({\frac{1}{3}})^{112}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知fn(x)=xn+xn-1+…+x-1,x∈(0,+∞).n是不小于2的固定正整數(shù).
(1)解不等式f2(x)≤2x;
(2)試分別證明:函數(shù)f3(x)在(0,1)內(nèi)有一個(gè)零點(diǎn),且在(0,1)內(nèi)僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=|x|.
(I)解關(guān)于x的不等式f(x)+f(x-2)≥3;
(Ⅱ)設(shè)g(x)=f(x+$\frac{1}{x}$)+f(x-$\frac{1}{x}$),證明:g(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.觀察下列等式:

按此規(guī)律,第10個(gè)等式的右邊等于280.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.2016年,包頭市將投資1494.88億進(jìn)行城鄉(xiāng)建設(shè).其中將對(duì)奧林匹克公園進(jìn)行二期擴(kuò)建,擬建包頭市最大的摩天輪建筑.其旋轉(zhuǎn)半徑50米,最高點(diǎn)距地面110米,運(yùn)行一周大約21分鐘.某人在最低點(diǎn)的位置坐上摩天輪,則第7分鐘時(shí)他距地面大約為(  )米.
A.75B.85C.100D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤m的解集為[-1,5],求實(shí)數(shù)a,m的值;
(Ⅱ)當(dāng)a=2且0≤t<2時(shí),解關(guān)于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}中,an-$\frac{2}{{a}_{n}}$=2n,且an<0.
(1)求an;
(2)判斷數(shù)列{an}的增減性.

查看答案和解析>>

同步練習(xí)冊(cè)答案